通信原理实验报告Word格式文档下载.docx
- 文档编号:21487133
- 上传时间:2023-01-30
- 格式:DOCX
- 页数:15
- 大小:319.08KB
通信原理实验报告Word格式文档下载.docx
《通信原理实验报告Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《通信原理实验报告Word格式文档下载.docx(15页珍藏版)》请在冰豆网上搜索。
x1=square(2*pi*40*t,25);
x2=square(2*pi*40*t,50);
x3=square(2*pi*40*t,75);
%信号函数的调用
subplot(311);
%设置3行1列的作图区,并在第1区作图
plot(t,x1);
title('
占空比25%'
);
axis([00.2-1.51.5]);
%限定坐标轴的围
subplot(312);
plot(t,x2);
占空比50%'
subplot(313);
plot(t,x3);
占空比75%'
图1-1周期性方波
2.非周期性矩形脉冲信号rectpuls
x=rectpuls(t,width)
产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。
该函数横坐标围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的围。
Width的默认值为1。
例2:
生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。
如图1-2所示。
t=-4:
0.0001:
4;
T=4;
%设置信号宽度
x1=2*rectpuls(t,T);
%信号函数调用
subplot(121);
plot(t,x1);
x(t)'
axis([-4602.2]);
x2=2*rectpuls(t-T/2,T);
%信号函数调用
subplot(122);
x(t-T/2)'
3.抽样信号sinc
x=sinc(x)
产生一个抽样函数,其值为x/sinx。
例3:
生成抽样信号
,如图1-3所示。
%清理变量
t=-1:
0.001:
y=sinc(2*pi*t);
%信号函数调用
plot(t,y);
xlabel('
时间t'
ylabel('
幅值(y)'
抽样信号'
图1-2非周期性方波
图1-3抽样信号
【练一练】
用MATLAB信号工具箱中的pulstran函数产生冲激串的信号。
T=0:
1/50E3:
10E-3;
D=[0:
1/1E3:
0.8.^(0:
10)]'
;
Y=pulstran(T,D,'
gauspuls'
10E4,0.8);
plot(T,Y)
【实验心得】
通过此次试验,首先,让我对MATLAB强大的功能有了进一步的了解。
其次,也学会了一些常用信号的表示方法。
通过自己动手操作,我知道了pulstran函数的调用方法,可以自行画出冲击串函数。
实验二信号的Fourier分析
1)通过计算周期方波信号的Fourier级数,进一步掌握周期信号Fourier级数的计算方法。
2)通过求解非周期方波信号的Fourier变换,进一步掌握非周期信号Fourier变换的求解方法。
1.连续时间周期方波信号及其傅里叶级数计算的程序代码,其结果如图2-1所示。
dt=0.001;
%时间变量变化步长
T=2;
%定义信号的周期
t=-4:
dt:
%定义信号的时间变化围
w0=2*pi/T;
%定义信号的频率
x1=rectpuls(t-0.5-dt,1);
%产生1个周期的方波信号
x=0;
form=-1:
1%扩展1个周期的方波信号
x=x+rectpuls((t-0.5-m*T-dt),1);
%产生周期方波信号
end
subplot(221);
plot(t,x);
axis([-4401.1]);
%设定坐标变化围
周期方波信号'
)
N=10;
%定义需要计算的谐波次数为10
fork=-N:
N
ak(N+1+k)=x1*exp(-j*k*w0*t'
)*dt/T;
%求得Fourier系数ak
k=-N:
N;
subplot(212);
stem(k,abs(ak),'
k.'
%绘制幅度谱
傅里叶级数'
图2-1连续时间周期方波信号及其Fourier级数
2.非周期连续时间信号及其Fourier变换的程序代码,其结果如图2-2所示。
width=1;
t=-5:
0.01:
5;
y=rectpuls(t,width);
%矩形脉冲信号
ylim([-12]);
%限定y坐标的围
矩形脉冲信号'
Y=fft(y,1024);
%快速Fourier变换
Y1=fftshift(Y);
%将频谱分量集中
plot(abs(Y1));
傅里叶变换'
图2-2非周期连续时间信号及其Fourier变换
这次实验是信号的Fourier分析。
通过此次实验,我进一步掌握周期信号Fourier级数的计算方法和非周期信号Fourier变换的求解方法。
可以通过MATLAB来自己画出要求的图形,对老师的代码也掌握了。
实验三调幅信号及其功率谱计算
1)通过计算AM调制信号,进一步熟悉并掌握AM的调制过程。
2)通过对AM调制信号的功率谱计算,进一步熟悉并掌握AM调制信号的功率谱计算方法。
1.AM调制信号及其功率谱计算的程序代码及注释说明
%AM基带信号
dt=0.001;
%采样时间间隔
fs=1;
%基带信号频率
fc=10;
%载波频率
T=5;
%调制信号的时间长度
N=T/dt;
%采样点总数
t=[0:
N-1]*dt;
%采样时间变量
mt=sqrt
(2)*cos(2*pi*fs*t);
%基带信号时域表达式
%AM调制信号
A0=2;
%直流偏移量
s_AM=(A0+mt).*cos(2*pi*fc*t);
%AM调制信号
%PSD计算
[X]=fft(s_AM);
%对AM调制信号进行快速Fourier变换
[Y]=fft(mt);
%对基带信号进行快速Fourier变换
PSD_X=(abs(X).^2)/T;
%根据功率谱密度公式计算AM调制信号的PSD
PSD=(abs(Y).^2)/T;
%根据功率谱密度公式计算基带信号的PSD
PSD_Y=fftshift(PSD);
%将零频分量移到频谱的中心位置
PSD_X_dB=10*log10(PSD_X);
%将功率化为以dB为单位
PSD_Y_dB=10*log10(PSD_Y);
f=[-N/2:
N/2-1]*2*fc/N;
%设置频率变量
%绘图输出
plot(t,s_AM);
holdon;
plot(t,A0+mt,'
r--'
%绘制包括线
AM调制信号及其包络'
plot(f,PSD_Y_dB);
axis([-2*fc2*fc0max(PSD_Y_dB)]);
基带信号的PSD(dB)'
plot(f,PSD_X_dB);
axis([-2*fc2*fc0max(PSD_X_dB)]);
AM调制信号的PSD(dB)'
2.AM调制信号及其功率谱的计算结果
图3-1AM调制信号及其功率谱
试用MATLAB编程计算抑制载波双边带(DSB-SC)调制信号及其功率谱密度,所用基带模拟信号和载波表达式同上。
%基带信号
%采样时间间隔
%采样时间变量
%抑制载波双边带(DSB-SC)调制信号
A0=0;
%对基带信号进行快速Fourier变换
%设置频率变量
plot(t,s_抑制载波双边带(DSB-SC));
抑制载波双边带(DSB-SC)调制信号及其包络'
抑制载波双边带(DSB-SC)调制信号的PSD(dB)'
此次实验是调幅信号及其功率谱计算,通过计算AM调制信号,我熟悉并掌握了AM的调制过程。
通过对AM调制信号的功率谱计算,我熟悉并掌握了AM调制信号的功率谱计算方法。
在AM实验的基础之上,我能够使用MATLAB编程计算抑制载波双边带(DSB-SC)调制信号及其功率谱密度。
实验四Simulink在数字调制中的应用
1)通过Simulink仿真,进一步熟悉并掌握2ASK的调制及其非相干解调的过程。
2)通过对2ASK的调制及非相干解调过程的仿真,初步熟悉并掌握Simulink的仿真方法及其通信blocksets的应用。
1.2ASK仿真模型图
图4-32ASK相乘法调制及其非相干解调的仿真模型图
2.各仿真模块的参数设置。
3.实验结果
通过此次仿真实验,我认识到了MATLAB仿真模块功能的强大,熟悉并掌握了2ASK的调制及其非相干解调的过程。
通过自己操作而得出实验结论,我的实验动手能力有了进一步提高。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 通信 原理 实验 报告