青岛版五四制小学六年级数学总复习资料文档格式.docx
- 文档编号:21425627
- 上传时间:2023-01-30
- 格式:DOCX
- 页数:19
- 大小:241.27KB
青岛版五四制小学六年级数学总复习资料文档格式.docx
《青岛版五四制小学六年级数学总复习资料文档格式.docx》由会员分享,可在线阅读,更多相关《青岛版五四制小学六年级数学总复习资料文档格式.docx(19页珍藏版)》请在冰豆网上搜索。
之
分数【真分数、假分数】
1、把单位“1平”均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数,是这个分数的分数单位。
2、两个数相除,它们的商可以用分数表示。
即:
a÷
b=(b≠0)
3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000⋯⋯的分数。
4、分数可以分为真分数和假分数。
5、分子小于分母的分数叫做真分数。
真分数小于1。
6、分子大于或等于分母的分数叫做假分数。
假分数大于或等于1。
7、分子和分母只有公因数1的分数叫做最简分数。
8、分数的基本性质:
分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不
变。
9、小数的性质和分数的基本性质是一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】1、表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫百分率或百分比,百分数通常用“%”表示。
2、分数与百分数比较:
不同点
相同点
分数
可以表示具体数量,可以有单位名称
表示两个数之间的关系
百分数
不可以表示具体数量,不可以有单位名称
3、分数、小数、百分数的互化。
(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000⋯⋯的分数,再约分。
(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。
(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化
成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
4、熟记常用三数的互化。
=0.5=50%
=0.8=80%
=0.3=30%
=0.65=65%
≈0.333=33.3%
≈0.167=16.7%
=0.7=70%
=0.85=85%
≈0.667=66.7%
≈0.833=83.3%
=0.9=90%
=0.95=95%
=0.25=25%
=0.125=12.5%
=0.05=5%
=0.04=4%
=0.75=75%
=0.375=37.5%
=0.15=15%
=0.025=2.5%
=0.2=20%
=0.625=62.5%
=0.35=35%
=0.02=2%
=0.4=40%
=0.875=87.5%
=0.45=45%
=0.01=1%
=0.6=60%
=0.1=10%
=0.55=55%
5、出勤率表示出勤人数占总人数的百分之几。
合格率表示合格件数占总件数的百分之几。
成活率表示成活棵数占总棵数的百分之几。
6、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
7、多的÷
“1多”百=分之几少的÷
“1少”百=分之几
8、应得利息是税前利息,实得利息是税后利息。
9、利息=本金×
利率×
时间
10、应得利息-利息税=实得利息
11、几折表示十分之几,表示百分之几十;
几几折表示十分之几点几,表示百分之几十几。
12、原价×
折扣=现价现价÷
原价=折扣现价÷
折扣=原价
13、几成表示十分之几表示百分之几十;
几成几表示十分之几点几,表示百分之几十几。
因数与倍数【素数、合数、奇数、偶数】
1、4×
3=12,12是4的倍数,12也是3的倍数,4和3都是12的因数。
2、一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
3、一个数最小的因数是1,最大的因数是它本身。
一个数因数的个数是有限的。
4、5的倍数:
个位上的数是5或0。
2的倍数:
个位上的数是2、4、6、8或0。
2的倍数都是双数。
3的倍数:
各位上数的和一定是3的倍数。
5、是2的倍数的数叫做偶数。
不是2的倍数的数叫做奇数。
6、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。
7、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。
8、在1—20这些数中:
(1既不是素数,也不是合数)
奇数:
1、3、5、7、9、11、13、15、17、19。
偶数:
2、4、6、8、10、12、14、16、18、20。
素数:
2、3、5、7、11、13、17、19。
(共8个,和为77。
)
合数:
4、6、8、9、10、12、14、15、16、18、20。
(共11个,和为132。
9、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。
10、如果两个数是倍数关系,则大数是最小公倍数,小数是最大公因数。
11、如果两个数只有公因数1,则最大公因数是1,最小公倍数是它们的乘积。
(二)数的运算
计算法则【整数、小数、分数】
1、计算整数加、减法要把相同数位对齐,从低位算起。
2、计算小数加、减法要把小数点对齐,从低位算起。
3、小数乘法:
(1)先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
(2)注意:
在积里点小数点时,位数不够的,要在前面用0补足。
4、小数除法:
(1)商的小数点要和被除数的小数点对齐;
(2)有余数时,要在后面添0,继续往下除;
(3)个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。
(4)把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。
(5)当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。
5、一个小数乘10、100、1000⋯⋯只要把这个小数的小数点向右移动一位、两位、三位
6、一个小数除以10、100、1000⋯⋯只要把这个小数的小数点向左移动一位、两位、三位
7、分数加、减法:
(1)同分母分数相加减,把分子相加减,分母不变。
(2)异分母分数相加减,要先通分化成同分母分数,然后再相加减。
8、分数大小的比较:
(1)同分母分数相比较,分子大的大,分子小的小。
(2)异分母的分数相比较,先通分然后再比较;
若分子相同,分母大的反而小。
9、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
10、甲数除以乙数(0除外),等于甲数乘乙数的倒数。
四则运算关系
加法
一个加数=和-另一
个加数
减法
被减数=差+减数
减数=被减数-差
乘法
一个因数=积÷
另一
个因数
除法
被除数=商×
除数
除数=被除数÷
商
两个规律
1、除法的商不变规律:
被除数和除数同时乘或除以相同的数(0除外),商不变。
2、乘法的积不变规律:
如果一个因数乘几,另一个因数则除以几,那么它们的积不变。
简便计算
1、运算定律:
运算定律
用字母表示
加法交换律
a+b=b+a
加法结合律
(a+b)+c=a+(b+c)
乘法交换律
a×
b=b×
a
乘法结合律
(a×
b)×
c=a×
(b×
c)
乘法分配律
(a+b)×
c+b×
c
减法运算规律
a-b-c=a-(b+c)
除法运算规律
a÷
b÷
c=a÷
(b×
2、乘、除法的互化。
(小技巧:
符号是相反的;
两个数相乘得“1。
”)
(1)A÷
0.1=A×
10
(7)A÷
0.01=A×
100;
(2)A×
0.1=A÷
(8)A×
0.01=A÷
100
(3)A÷
0.2=A×
5
(9)A÷
0.25=A×
4
(4)A×
0.2=A÷
(10)A×
0.25=A÷
(5)A÷
0.5=A×
2
(11)A÷
0.125=A×
8
(6)A×
0.5=A÷
(12)A×
0.125=A÷
3、求近似数的方法。
(1)四舍五入法。
(2)进一法。
(3)去尾法。
4、积与因数、商与被除数的大小比较:
第2个因数>
1,积>
第1个因数;
除数>
1,商<
被除数;
第2个因数=1,积=第1个因数;
除数=1,商=被除数;
第2个因数<
1,积<
第1个因数。
除数<
1,商>
数量关系
单价×
数量=总价总价÷
数量=单价总价÷
单价=数量
工作效率×
工作时间=工作总量工作总量÷
工作时间=工作效率工作总量÷
工作效率=工作时间
速度×
时间=路程路程÷
时间=速度路程÷
速度=时间
速度和×
相遇时间=路程路程÷
相遇时间=速度和路程÷
速度和=相遇时间
三)式与方程
用字母表示数
1、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“
也可以省略不写。
在省略数字与字母之间的乘号时,要把数字写在字母的前面。
2、2a与a2意义不同:
2a表示两个a相加,a2表示两个a相乘。
2a=a+a,a2=a×
a。
3、用字母表示数:
(1)用字母表示任意数:
如X=4a=6
(2)用字母表示常见的数量关系:
如s=vt
(3)用字母表示运算定律:
如a+b=b+a
(4)用字母表示计算公式:
S=ah
方程与等式
1、含有未知数的等式叫做方程。
2、使方程左右两边相等的未知数的值,叫做方程的解。
3、求方程的解的过程,叫做解方程。
4、方程和等式的联系与区别:
方程
等式
联系
方程一定是等式,等式不一定是方程
区别
含有未知数
不一定含有未知数
5、等式的基本性质
(一)等式两边同时加上(或减去)一个相同的数,所得结果仍然是等式。
6、等式的基本性质
(二)等式两边同时乘(或除以)一个不等于零的数,所得结果仍然是等式。
7、列方程解应用题的一般步骤:
(1)弄清题意,找出未知数并用X表示。
(2)找出应用题中数量间的相等关系,并列出方程。
(3)求出方程的解。
4)检验或验算,写出答案。
(四)正比例与反比例比和比例1、比和比例的联系与区别:
比与比例的区别
1、意义不同
比的意义
两个数相除又叫做两个数的比。
比例的意义
表示两个比相等的式子叫做比例。
2、名称不同
比的名称
两点读作比,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比例的名称
组成比例的四个数叫做比例的项,两端的两项叫做比例的的外项,中间的两项叫做比例的内项。
3、性质不同
比的性质
比的前项和后项同时乘或者除以相同的数(0除外),比值不变。
比例的性质
在比例里,两个外项的积等于两个内项的积。
4、应用不同
应用比的意义
求比值。
应用比的性质
化简比。
应用比例的意义
判断两个不能否组成比例。
应用比例的性质
不但可以判断两个比能否组成比例,还可以解比例。
2、比同分数、除法的联系与区别:
比
前项
分子
被除数
联
比号
分数线
除号
后项
分母
系
比值
分数值
比的基本性质
分数的基本性质
除法的商不变性质
区
别
比表示两个数之间的关系。
分数表示一个数。
除法表示一种运算。
3、求比值与化简比的区别:
一般方法
结果
求比值
根据比值的意义,用前项除以后项。
是一个数。
可以是整数、小数或分数。
化简比
根据比的基本性质,把比的前项和后项都乘或除以相同的数(零除外)。
是一个比。
它的前项和后项都是整数,并且是互质数。
4、化简比:
(1)整数比的化简方法是:
用比的前项和后项同时除以它们的最大公约数。
(2)小数比的化简方法是:
先把小数比化成整数比,再按整数比化简方法化简。
(3)分数比的化简方法是:
用比的前项和后项同时乘以分母的最小公倍数。
5、比例尺:
我们把图上距离和实际距离的比叫做这幅图的比例尺。
6、比例尺=图上距离︰实际距离
比例尺=
正比例、反比例
1、正比例:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
2、反比例:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
3、正比例与反比例的区别:
正比例
反比例
都有两种相关联的量,一种量变化,另一种量也随着变化。
商一定
=k(一定)
积一定
x×
y=k(一定)
第二部份空间与图形
(一)图形的认识、测量量的计量
1、长度单位是用来测量物体的长度的。
常用的长度单位有:
千米、米、分米、厘米、毫米。
2、长度单位:
(10)
1千米=1000米
1米=10分米
1分米=10厘米
1厘米=10毫米
1米=100厘米
3、面积单位是用来测量物体的表面或平面图形的大小的。
常用的面积单位有:
平方千米、公顷、平方米、平方分米、平方厘米。
4、测量和计算土地面积,通常用公顷作单位。
边长100米的正方形土地,面积是1公顷。
5、测量和计算大面积的土地,通常用平方千米作单位。
边长1000米的正方形土地,面积
是1平方千米。
6、面积单位:
(100)
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
7、体积单位是用来测量物体所占空间的大小的。
常用的体积单位有:
立方米、立方分米(升)、
立方厘米(毫升)。
8、体积单位:
(1000)
1立方米=1000立方分米
1立方分米=1000立方厘米
1升=1000毫升
9、常用的质量单位有:
吨、千克、克。
10、质量单位:
1吨=1000千克
1千克=1000克
11、常用的时间单位有:
世纪、年、季度、月、旬、日、时、分、秒。
12、时间单位:
(60)
1世纪=100年
1年=12个月
1年=4个季度
1个季度=3个月
1个月=3旬
大月=31天
小月=30天
平年二月=28天
闰年二月=29天
1天=24小时
1小时=60分
1分=60秒
13、高级单位的名数改写成低级单位的名数应该乘以进率;
低级单位的名数改写成高级单位的名数应该除以进率。
14、常用计量单位用字母表示:
千米:
km
米:
m
分米:
dm
厘米:
cm
毫米:
mm
吨:
t
千克:
kg
克:
g
升:
l
毫升:
ml
平面图形【认识、周长、面积】
1、用直尺把两点连接起来,就得到一条线段;
把线段的一端无限延长,可以得到一条射线;
把线段的两端无限延长,可以得到一条直线。
线段、射线都是直线上的一部分。
线段有两个端点,长度是有限的;
射线只有一个端点,直线没有端点,射线和直线都是无限长的。
2、从一点引出两条射线,就组成了一个角。
角的大小与两边叉开的大小有关,与边的长短无关。
角的大小的计量单位是(°
)。
3、角的分类:
小于90度的角是锐角;
等于90度的角是直角;
大于90度小于180度的角是钝角;
等于180度的角是平角;
等于360度的角是周角。
4、相交成直角的两条直线互相垂直;
在同一平面不相交的两条直线互相平行。
5、三角形是由三条线段围成的图形。
围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。
6、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。
按边分,可以分为等边三角形、等腰三角形和任意三角形。
7、三角形的内角和等于180度。
8、在一个三角形中,任意两边之和大于第三边。
9、在一个三角形中,最多只有一个直角或最多只有一个钝角。
10、四边形是由四条边围成的图形。
常见的特殊四边形有:
平行四边形、长方形、正方形、梯形。
11、圆是一种曲线图形。
圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。
通过圆心并且两端都在圆的线段叫做圆的直径。
12、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。
这条直线叫做对称轴。
13、围成一个图形的所有边长的总和就是这个图形的周长。
14、物体的表面或围成的平面图形的大小,叫做它们的面积。
15、平面图形的面积计算公式推导:
【1】平行四边形面积公式的推导过程?
(1)把平行四边形通过剪切、平移可以转化成一个长方形。
(2)长方形的长等于平行
四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。
3)因为:
长方形面积=长×
宽,所以:
平行四边形面积=底×
高。
S=ah。
1)用两个完全一样的三角形可以拼成一个平行四边形。
2)平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半
(3)因为:
平行四边形面积=底×
高,所以:
三角形面积=底×
高÷
2。
S=ah÷
【3】梯形面积公式的推导过程?
(1)用两个完全一样的梯形可以拼成一个平行四边形。
(2)平行四边形的底等于梯形的
上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。
平行四边形面积=底×
梯形面积=(上底+下底)×
高÷
S=(a+b)h÷
【4】画图说明圆面积公式的推导过程
(1)把圆分成若干等份,剪开后,拼成了一个近似的长方形。
2)长方形的长相当于圆周长的一半,宽相当于圆的半径。
长方形面积=长×
圆面积=πr×
r=π2。
r即:
S=πr2。
16、平面图形的周长和面积计算公式:
长方形周长=(长+宽)×
C=πd
S=πr2
宽
C=2πr
S=π()2
正方形周长=边长×
r=d÷
正方形面积=边长×
边长
r=C÷
2π
高
d=2r
d=C÷
π
梯形面积=(上底+下底)×
17、常用数据:
XkB1.com
常用π值
常用平方数
2π=6.28
12π=37.68
3π=9.42
15π=47.1
4π=12.56
16π=50.24
112=121
5π=15.70
18π=56.52
122=144
6π=18.84
20π=62.8
152=225
7π=21.98
25π=78.5
252=625
8π=25.12
32π=1004.8
9π=28.26
2.25π=7.065
10π=31.4
6.25π=19.625
立体图形【认识、表面积、体积】
1、长方体、正方体都有6个面,12条棱,8个顶点。
正方体是特殊的长方体。
2、圆柱的特征:
一个侧面、两个底面、无数条高。
3、圆锥的特征:
一个侧面、一个底面、一个顶点、一条高。
4、表面积:
立体图形所有面的面积的和,叫做这个立体图形的表面积。
5、体积:
物体所占空间的大小叫做物体的体积。
容器所能容纳其它物体的体积叫做容器的容积。
6、圆柱和圆锥三种关系:
(1)等底等高:
体积1︰3
(2)等底等体积:
高1︰3
(3)等高等体积:
底面积1︰3
7、等底等高的圆柱和圆锥:
(1)圆锥体积是圆柱的1/3,
2)圆柱
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 青岛 五四 小学 六年级 数学 复习资料