联合估计异常检测方法的水处理控制pdfWord下载.docx
- 文档编号:21281206
- 上传时间:2023-01-29
- 格式:DOCX
- 页数:14
- 大小:35.50KB
联合估计异常检测方法的水处理控制pdfWord下载.docx
《联合估计异常检测方法的水处理控制pdfWord下载.docx》由会员分享,可在线阅读,更多相关《联合估计异常检测方法的水处理控制pdfWord下载.docx(14页珍藏版)》请在冰豆网上搜索。
2001KluwerAcademicPublishers.PrintedintheNetherlands.
Watertreatmentcontrolusingthejointestimationoutlierdetectionmethod
ChristineWrighta,∗andDavidBoothb
aDepartmentofManagement,WesternCarolinaUniversity,Cullowhee,NC28723,USA
E-mail:
cwright@email.wcu.edu
bAdministrativeSciencesDepartment,KentStateUniversity,Kent,OH44242,USA
Thelossofcontaminatedwastewaterintotheenvironmentbyleakageorothermeansisaseriousproblem.Thisproblemisessentiallythesameastrueofthelossofchemicalreagentsfromachemicalproductionorpurificationprocess.Thepresentarticleshowshowthejointestimationmethod,anoutlierdetectionmethodfortimeseriesanalysis,canbeusedbyafacilitymanagertodealwiththeseproblems.
Keywords:
jointestimation,outlierdetection,processcontrol,wastewatercontrol
1.Introduction
Inmanyindustries,itisimportanttodeterminewhentheprocessisout-of-control,(i.e.,whensignificantadverseprocesschangesoccur).Theideaistodiscoverthesead-verseprocesschangeswhiletheyarestillrelativelyminor,beforesubstandardproductorsignificantpollutionispro-duced.Oneexampleofanimportantchemicalprocesscon-trolproblemiswastewatertreatment.Thispaperdiscussestheuseofaprocesscontrolmethodforthepurposeofmonitoringwastewaterdata.Theobjectiveoftheresearchwastodetermineiftheout-of-controlobservations(i.e.,abnormalstates)couldbedetectedbyJEintheperiodwhentheyfirstoccurred.Theprocesscontrolmethodreportedhereincanbeusedforanycompoundforwhichananalyticalchemicaldetectionmethodexists.Themethodthatweconsider,JointEstimation(JE),hasthepotentialtobeextremelyimportanttobothgeneralpollutioncontrolandstatisticalprocesscon-trol.
2.Background
Ithasbeenpreviouslyshownthatpollutionproducingsituationsmayberecognizedthroughthedetectionofstatisticaloutliers[1–14].Anoutlierisanypointthatdeviatessignificantlyfromtheunderlyingprocessmodelortimeseriespattern,indicatingachangeintheprocessandthusanout-of-controlsituationwithrespecttotheprocessmodel.Pointsoutsideofthreestandarddeviationsofthetargetedprocessmeanareusuallyconsideredtobeoutliers.Suchapointcanbeidentifiedusingstatisticalmethods.Ifsuchexist,theprocessissaidtobe“outofcontrol”(i.e.,thereisasignificantadverseprocesschangeduetoanassignablecausewhichisacausethatcanbeidentified).Otherwisetheprocessissaidtobe“incontrol”(i.e.,onlyrandomvariationsofoutputexistwithincertaincontrollimits).
Traditionalstatisticalprocesscontrolchartsaswellasmostoftheothermethodscurrentlyusedarebasedupontheassumptionthattheobservationsintheprocesstimeseriesareindependentandidenticallydistributed(IID)aboutthetargetedprocessmeanortargetedvalueatanytimetandthatthedistributionisnormalwhentheprocessisinstatisticalcontrol.Independenceimpliesthatthereisnoparticularpatterninthedata.
Unfortunately,muchofthedatausedinstatisticalprocesscontrolisnon-IID[15].AlwanandRadson[15]alsonotethatbecauseoftheeffortsofG.E.P.Box,thechemicalindustryhasrecognizedformanyyearsthatautocorrelation(i.e.,relationshipsacrosstime)existintheirprocesses.Bax-ley[16],Berthouexetal.[17],Emeretal.[18],HarrisandRoss[19],andHunter[20]havenotedthatcontinuousprocessindustries,suchaswastewaterplants,oftenhaveautocorrelatedprocessdata.
3.ApproachestoSPCwhenstandardmethodsarenotappropriate
Processmeasuresovertimeareofteninterdependent(i.e.,theobservationsareautocorrelated).Further,manyprocesstimeseriesexhibitacharacteristicallyrepetitivepattern,whichcanbemathematicallymodeledbyanAutoregressiveMovingAverage[ARMA(p,q)]model.Forexample,ARMA(1,1)andothertimeseriesmodelshavebeenempiricallyfoundinsomecasestobeappropriateformodelingaprocesstimeseries[21].Undersuchconditions,traditionalSPCproceduresmaybeineffectiveandinappropriateformonitoringandcontrollingtheprocess,perhapsevenerroneouslyindicatinganout-of-controlsituationwhenthecriteriaofthetraditionalcontrolchartareapplied[15].Inotherwords,theyarenotaseffectiveastheyshouldbeindetecting,forexample,theescapeofpollutantsintotheenvironment.Thus,iftheprocessbeingcontrolledisonethatproducespollutants,thesecompoundsmaybeintroducedintotheenvironmentwithouttheproducer’sknowledge.Useoftimeseriesbasedprocesscontrolmethods,ratherthanstandardstatisticalprocesscontrolmethods,isappropriatewhendataisnon-IIDorwhenoutlyingobservationsmayexistinthedata,suchaswhenthematerialsareparticularlyvaluableorinvolvecriticalsafetyconcerns.
4.Jointestimationmethod
Themethodconsideredissuccessfulinhandlingtheproblemsofgeneralstatisticalprocessandpollutioncon-trol[12,14].JointEstimation(JE),atimeseriesprocedure,developedbyChenandLiu[22]hasbeenappliedtootherenvironmentalpollutionsituations[12].ThismethodissuperiortotheoneusedearlierbyPrasad[23]inthat(a)outliersareobtainediteratively,basedontheadjustedresidualsandobservations,(b)theproceduredoesnotrequireinterventionmodelstobeestimatedtoaccommodatetheoutliers,(c)theidentificationandlocationofoutliersarebasedonrobustparameterestimates,(d)theoutliereffectsarejointlyestimatedusingmultipleregression,and(e)theproceduredifferentiatesbetweenandaccommodatesforfourformsofoutliers:
InnovationalOutliers(IO),AdditiveOutliers(AO),LevelShifts(LS),andTemporaryChanges(TC).Thesefourtypesofoutliersrangebetweentheextremesofaone-timechange(AO),apermanentshiftinthelevelofaprocess(LS)andtwodecayingpatternsaftertheinitialimpact(IOandTC).Thismethodisproprietary;
thedetailsofitsalgorithmsarelimited.TheJEsubroutineisavailableontheXUTSSoftwarefromScientificComputingAssociates(SCA),OakBrook,IL.Themethodisdescribedinappendix.Inaddition,figure1depictsallfourtypesforanARMA(1,0)model.
TheinformationprovidedbytheJEmethodwithregardtothelocationoftheoutliercanincreasetheeffectivenessofdetectingthelossofpollutantsintotheenvironment.ThismethodwastestedbyPrasadetal.andfoundtobeverysuccessfulwithnuclearinventorydataaswellasgeneralSPCdata[2,3].Wright[14]andWrightetal.[24]showthatthismethodcaneffectivelylocateoutliersinatimeserieswithasfewas9observationswheretheoutlieristhelastobservationinthetimeseries.AlloutliersareidentifiedasAOwhentheyfirstoccur,thiscanbeseeninfigure1.Furthermore,thismethodhasconsiderablyfewerfalsealarmsthantheExponentiallyWeightedMovingAverage(EWMA)model[12,14,24].
Figure1.AO,TC,LSandIOforanARMA(1,0)model.
5.Researchmethod
Weutilizethejointestimation(JE)outlierdetectionmethodofChenandLiu[22]todetectoutliers(i.e.,out-of-controlobservations)inwastewatertreatmentdata.Thisdataconsistsof527dailymeasurementsof38differentsensorreadings(variables).Thesevariablesareshownintable1.Thewastewaterplantmanageridentified13differentstatesofperformance;
theseareshownintable2andincludesuchconditionsasnormaloperations,storms,solidsoverload,etc.Ofthesestates,onlystates1,5,9and11arenormal.Theobjectiveoftheresearchwastodetermineiftheout-of-controlobservations(i.e.,abnormalstates)couldbedetectedbyJEintheperiodwhentheyfirstoccurred.Itisofconsiderableimportancetodeterminethatanout-of-controlsituationexistsonthedaywhenitfirstoccursratherthanseveraldayslater.Clearlytheenvironmentalandhealthrisksinvolvednecessitateearlydetection,perhapsevenatthecostofsomefalsealarms.
Thejointestimationmethodisappealingbecauseitperformswelloverawidevarietyofbothseasonalandnon-seasonalARIMAmodels.TheusermustspecifythemodeltypefortheseriespriortousingtheJEroutine.Thismethodisproprietary,thedetailsofitsalgorithmsarelimited.TheJEsubroutineisavailableontheXUTSSoftwarefromScientificComputingAssociates(SCA),OakBrook,IL.Inaddition,itispossibletousetheJEmethodasanonlineprocesscontroltechniquethroughacommunicationprotocoldevelopedbetweentheonlinedatacollectionunitandtheSCAsystem.Wrightetal.[24]describethemethodindetail.Abriefsummaryofthemethodisincludedhere.
Thejointestimationmethodinvolvesthreestages.Thefirststageobtainsmaximumlikelihoodestimatesofparametersandresiduals.Then,outliersaresoughtandtheireffectsareremovedfromtheresiduals.Afteralloutliershavebeendetected,modelparameterestimatesarerevised.Inthesecondstage,multipleregressionisutilizedtojointlyestimatetheeffectoftheoutliersandmodelparameters.Thentheestimatedt-valuesarecomparedwiththecriticalvalue,C.Ifthet-valueofasuspectedoutlierissmallerthanC,theoutlierisdeemednotsignificant.Next,anadjustedseriesisobtainedbyremovingsignificantoutliereffects.Maximumlikelihoodestimatesofmodelparametersarefoundbasedontheadjustedseries.Inthethirdstage,outliersaresoughtbasedonfinalparameterestimatesfoundinstagetwo.Residualsarecomputedusingtheseestimates.Theseresidualsareusedastheprocedureiteratesthroughthefirsttwostages.
ChenandLiu[22]haveshownthattheJEmethodisextremelyeffectivefordetectingoutliersinautoco
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 联合 估计 异常 检测 方法 水处理 控制 pdf