人教版初一数学知识点下册总结Word文档下载推荐.docx
- 文档编号:21246622
- 上传时间:2023-01-28
- 格式:DOCX
- 页数:8
- 大小:42.49KB
人教版初一数学知识点下册总结Word文档下载推荐.docx
《人教版初一数学知识点下册总结Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《人教版初一数学知识点下册总结Word文档下载推荐.docx(8页珍藏版)》请在冰豆网上搜索。
2.不等式的基本性质:
不等式的基本性质1:
不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;
不等式的基本性质2:
不等式两边都乘以(或除以)同一个正数,不等号的方向不变;
不等式的基本性质3:
不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.
3.不等式的解集:
能使不等式成立的未知数的值,叫做这个不等式的解;
不等式所有解的集合,叫做这个不等式的解集.
4.一元一次不等式:
只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;
它的标准形式是ax+b>0或ax+b<0,(a≠0).
5.一元一次不等式的解法:
一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;
注意:
在数轴上表示不等式的解集时,要注意空圈和实点.
6.一元一次不等式组:
含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;
ab>0?
?
或
;
ab<0?
?
ab=0?
a=0或b=0;
a=m.
7.一元一次不等式组的解集与解法:
所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;
解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.
8.一元一次不等式组的解集的四种类型:
设a>b
9.几个重要的判断:
整式的乘除
1.同底数幂的乘法:
am·
an=am+n,底数不变,指数相加.
2.幂的乘方与积的乘方:
(am)n=amn,底数不变,指数相乘;
(ab)n=anbn,积的乘方等于各因式乘方的积.
3.单项式的乘法:
系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.
4.单项式与多项式的乘法:
m(a+b+c)=ma+mb+mc,用单项式去乘多项式的每一项,再把所得的积相加.
5.多项式的乘法:
(a+b)·
(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.
6.乘法公式:
(1)平方差公式:
(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;
(2)完全平方公式:
①(a+b)2=a2+2ab+b2,两个数和的平方,等于它们的平方和,加上它们的积的2倍;
②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的平方和,减去它们的积的2倍;
※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.
7.配方:
(1)若二次三项式x2+px+q是完全平方式,则有关系式:
※
(2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k
①可以判断ax2+bx+c值的符号;
②当x=h时,可求出ax2+bx+c的最大(或最小)值k.
※(3)注意:
.
8.同底数幂的除法:
am÷
an=am-n,底数不变,指数相减.
9.零指数与负指数公式:
(1)a0=1(a≠0);
a-n=
(a≠0).注意:
00,0-2无意义;
(2)有了负指数,可用科学记数法记录小于1的数,例如:
0.0000201=2.01×
10-5.
10.单项式除以单项式:
系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.
11.多项式除以单项式:
先用多项式的每一项除以单项式,再把所得的商相加.
※12.多项式除以多项式:
先因式分解后约分或竖式相除;
被除式-余式=除式·
商式.
13.整式混合运算:
先乘方,后乘除,最后加减,有括号先算括号内.
线段、角、相交线与平行线
几何A级概念:
(要求深刻理解、熟练运用、主要用于几何证明)
1.角平分线的定义:
一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图)
几何表达式举例:
(1)∵OC平分∠AOB
∴∠AOC=∠BOC
(2)∵∠AOC=∠BOC
∴OC是∠AOB的平分线
2.线段中点的定义:
点C把线段AB分成两条相等的线段,点C叫线段中点.(如图)
(1)∵C是AB中点
∴AC=BC
(2)∵AC=BC
∴C是AB中点
3.等量公理:
(如图)
(1)等量加等量和相等;
(2)等量减等量差相等;
(3)等量的等倍量相等;
(4)等量的等分量相等.
(1)
(2)
(3)
(4)
(1)∵AC=DB
∴AC+CD=DB+CD
即AD=BC
(2)∵∠AOC=∠DOB
∴∠AOC-∠BOC=∠DOB-∠BOC
即∠AOB=∠DOC
(3)∵∠BOC=∠GFM
又∵∠AOB=2∠BOC
∠EFG=2∠GFM
∴∠AOB=∠EFG
(4)∵AC=
AB,EG=
EF
又∵AB=EF
∴AC=EG
4.等量代换:
∵a=c
b=c
∴a=b
∵a=cb=d
又∵c=d
∴a=b
∵a=c+d
b=c+d
5.补角重要性质:
同角或等角的补角相等.(如图)
∵∠1+∠3=180°
∠2+∠4=180°
又∵∠3=∠4
∴∠1=∠2
6.余角重要性质:
同角或等角的余角相等.(如图)
∵∠1+∠3=90°
∠2+∠4=90°
7.对顶角性质定理:
对顶角相等.(如图)
∵∠AOC=∠DOB
∴……………
8.两条直线垂直的定义:
两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)
(1)∵AB、CD互相垂直
∴∠COB=90°
(2)∵∠COB=90°
∴AB、CD互相垂直
9.三直线平行定理:
两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)
∵AB∥EF
又∵CD∥EF
∴AB∥CD
10.平行线判定定理:
两条直线被第三条直线所截:
(1)若同位角相等,两条直线平行;
(2)若内错角相等,两条直线平行;
(3)若同旁内角互补,两条直线平行.(如图)
(1)∵∠GEB=∠EFD
∴AB∥CD
(2)∵∠AEF=∠DFE
(3)∵∠BEF+∠DFE=180°
11.平行线性质定理:
(1)两条平行线被第三条直线所截,同位角相等;
(2)两条平行线被第三条直线所截,内错角相等;
(3)两条平行线被第三条直线所截,同旁内角互补.(如图)
(1)∵AB∥CD
∴∠GEB=∠EFD
(2)∵AB∥CD
∴∠AEF=∠DFE
(3)∵AB∥CD
∴∠BEF+∠DFE=180°
几何B级概念:
(要求理解、会讲、会用,主要用于填空和选择题)
一基本概念:
直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.
二定理:
1.直线公理:
过两点有且只有一条直线.
2.线段公理:
两点之间线段最短.
3.有关垂线的定理:
(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.
4.平行公理:
经过直线外一点,有且只有一条直线与这条直线平行.
三公式:
直角=90°
,平角=180°
,周角=360°
,1°
=60′,1′=60″.
四常识:
1.定义有双向性,定理没有.
2.直线不能延长;
射线不能正向延长,但能反向延长;
线段能双向延长.
3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………”是命题的结论.
4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.
5.数射线、线段、角的个数时,应该按顺序数,或分类数.
6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.
7.方向角:
(1)
(2)
8.比例尺:
比例尺1:
m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.
9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;
证明的依据是学过的定义、公理、定理和推论.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 初一 数学 知识点 下册 总结