高一数学必修5不等式题型总结.doc
- 文档编号:2120220
- 上传时间:2022-10-27
- 格式:DOC
- 页数:8
- 大小:631.32KB
高一数学必修5不等式题型总结.doc
《高一数学必修5不等式题型总结.doc》由会员分享,可在线阅读,更多相关《高一数学必修5不等式题型总结.doc(8页珍藏版)》请在冰豆网上搜索。
含参数的一元二次不等式的解法
解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?
对含参一元二次不等式常用的分类方法有三种:
一、按项的系数的符号分类,即;
例1解不等式:
分析:
本题二次项系数含有参数,,故只需对二次项
系数进行分类讨论。
解:
∵
解得方程两根
∴当时,解集为
当时,不等式为,解集为
当时,解集为
例2解不等式
分析因为,,所以我们只要讨论二次项系数的正负。
解
当时,解集为;当时,解集为
二、按判别式的符号分类,即;
例3解不等式
分析本题中由于的系数大于0,故只需考虑与根的情况。
解:
∵∴当即时,解集为;当即Δ=0时,解集为;
当或即,此时两根分别为,,显然,
∴不等式的解集为
例4解不等式
解因,所以当,即时,解集为;
当,即时,解集为;
当,即时,解集为R。
三、按方程的根的大小来分类,即;
例5解不等式
分析:
此不等式可以分解为:
,故对应的方程必有两解。
本题只需讨论两根的大小即可。
解:
原不等式可化为:
,令,可得:
,∴当或时,,故原不等式的解集为;当或时,,可得其解集为;
当或时,,解集为。
例6解不等式,
分析此不等式,又不等式可分解为,故只需比较两根与的大小.
解原不等式可化为:
,对应方程的两根为
,当时,即,解集为;当时,即,解集为
一元二次不等式参考例题
(2)
1.
(1)解不等式()
(2)不等式的解集为,求的值.()
2.解下列关于的不等式:
(1)
(2)
(3)(4)
(5)(6)
3.
(1)若不等式对恒成立,求实数的取值范围.()
(2)若不等式的解集为,求实数的取值范围.()
4.
(1)已知,
①若,求实数的取值范围.;()
②若,求实数的取值范围.;()
③若为仅含有一个元素的集合,求的值.()
(2)已知,,求实数的取值范围.
()
(3)关于的不等式与的解集依次为与,
若,求实数的取值范围.()
(4)设全集,集合,若,
求实数的取值范围.()
(5)已知全集,,
若,求实数的取值范围.()
一元二次不等式及其解法
1.二次函数的图象及性质:
二次函数的图象的对称轴方程是,顶点坐标是.
2.二次函数的解析式的三种形式:
(一般式);
(零点式);
(顶点式).
3.一元二次不等式的解法
一元二次不等式的解集:
设相应的一元二次方程的两根为,,则不等式的解的各种情况如下表:
二次函数
()的图象
一元二次方程
有两相异实根
有两相等实根
无实根
R
4.解一元二次不等式的步骤:
(1)将二次项系数化为“+”:
A=>0(或<0)(a>0);
(2)计算判别式,分析不等式的解的情况;
(3)写出解集.
5.讨论二次函数在指定区间上的最值问题:
(1)注意对称轴与区间的相对位置.一般分为三种情况讨论,即:
①对称轴在区间左边,函数在此区间上具有单调性;②对称轴在区间之内;③对称轴在区间右边.
(2)函数在区间上的单调性.要注意系数的符号对抛物线开口的影响.
6.二次函数的区间根的分布情况一般需从三方面考虑:
①判别式;②区间端点的函数值的符号;③对称轴与区间的相对位置.
三、典型例题选讲
题型1:
考查一元二次函数的性质
例1函数是单调函数的充要条件是()
A.B.C.D.
解:
∵函数的对称轴为,
∴函数)是单调函数,.故选A.
归纳小结:
二次函数的单调区间是和,结合开口方向就可得出所需的条件,从而求出的范围.
例2已知二次函数的对称轴为,截轴上的弦长为,且过点,求函数的解析.
解:
∵二次函数的对称轴为,可设所求函数为,∵截轴上的弦长为,
∴过点和,又过点,∴,解之得,
∴.
归纳小结:
求二次函数的解析式一般采用待定系数法,但要注意根据已知条件选择恰当的解析式形式:
一般式、零点式和顶点式,正确的选择会使解题过程得到简化.
题型2:
简单不等式的求解问题
例3求下列不等式的解集.
(1);
(2)
解法一:
因为.所以,原不等式的解集是.
解法二:
整理,得.
因为无实数解,所以不等式的解集是.从而,原不等式的解集是.
归纳小结:
解一元二次不等式要抓住“三个二次”的关系,按照解一元二次不等式的步骤求解,必要时要画出二次函数的图象进行观察.
例4不等式的解集为,求与的值.
解法一:
设的两根为、,由韦达定理得:
由题意得∴,,此时满足,.
解法二:
构造解集为的一元二次不等式:
,即,此不等式与原不等式应为同解不等式,故,.
归纳小结:
此题为一元二次不等式逆向思维题,要使解集为,不等式需满足条件,,的两根为,.在解题时要抓住一元二次方程、一元二次不等式解集的关系.
题型3:
含参不等式的求解问题
例5解关于的不等式.
证:
分以下情况讨论
(1)当时,原不等式变为:
,∴,即不等式的解集为
(2)当时,原不等式变为:
①①当时,①式变为,∴不等式的解为或.即不等式的解集为;②当时,①式变为.②,∵,
∴当时,,此时②的解为.即不等式的解集为;当时,,此时②的解为.
当时,,即不等式的解集为.
归纳小结:
解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:
分类应做到使所给参数的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论时,解一元二次不等式应首选做到将二次项系数变为正数再求解.
题型4:
一元二次不等式的应用
例6
(1)已知函数,则不等式的解集是()
A.B.
C.D.
解:
依题意得
所以,选C.
(2)若函数f(x)=的定义域为R,则a的取值范围为_______.
解:
函数的定义域为R,对一切都有恒成立,即恒成立,
成立,即,,故选A.
归纳小结:
解一元二次不等式往往与分段函数、指数函数和对数函数结合进行综合考查,
一般是借助于函数的性质和图象进行转化,再求解一元二次不等式,利用一元二次不等式分析相应一元二次函数的性质,体现“三个二次”之间的紧密联系,这也是一元二次不等式的重要考点之一.
例7已知函数的最大值为,求的值.
解:
令,,∴,对称轴为,当,即时,,得或(舍去).当,即时,函数在上单调递增,由,得;当,即时,函数在上单调递减,由,得(舍去).
综上可得,的值为或.
归纳小结:
令,问题就转化为二次函数的区间最值问题,再由对称轴与区间的三种位置关系的讨论就可求得的值.此题中要注意的条件.
例8设不等式的解集为,如果,求实数的取值范围?
解:
有两种情况:
其一是=,此时<0;其二是M≠,此时=0或>0,分三种情况计算a的取值范围.设,有==,当<0时,-1<<2,=;当=0时,=-1或2;当=-1时=;当=2时,=
当>0时,a<-1或a>2.设方程的两根,,且<,那么M=[,],M1≤x1<x2≤4,即解得2<<,∴M[1,4]时,的取值范围是(-1,).
一元二次不等式解法应试能力测试
1.不等式的解集是()
A.B.C.D.
2.设集合M={x|0≤x<2},,则有M∩N=()
A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}
3.对于任意实数x,不等式恒成立,则实数a的取值范围是()
A.-1≤a≤0B.-1≤a<0C.-1 4.不等式的解集为() A.{x|-2≤x≤2}B.{x|x≤-2或x≥2}C.{x|-2≤x≤2或x=6}D.{x|x≥2} 5.已知,,则A∩B的非空真子集个数为() A.2B.3C.7D.8 6.已知,,且A∪B=R,A∩B={x|3 A.p=-3,q=-4B.p=-3,q=4C.p=3,q=-4D.p=3,q=4 7.若关于x的二次不等式的解集是{x|-7 A.1B.2C.3D.4 8.不等式ax A.a=0且b≤0B.b=0且a>0C.a=0且b>0D.b=0且a<0 1.不等式的解为_______________. 2.使函数有意义的x的取值范围是_______________. 3.已知,,若,则a的取值范围是_______________; 若,则a的取值范围是_______________. 4.关于x的不等式(a+b>0)的解集是_______________. 1.为使周长为20cm的长方形面积大于,不大于,它的短边要取多长? 2.解不等式. 3.解关于x的不等式(a>0). 4.k为何值时,关于x的不等式对一切实数x恒成立. 参考答案 一、 1.D2.B3.C4.C 5.A提示: 因为A∩B={3,4} 6.A提示: 因B={x|x<-1或x>3},由已知得A={x|-1≤x≤4}∴-1,4是的两根,∴p=-3,q=-4. 7.C8.A,提示: 因的解为,只有a=0且b≤0时,ax 二、 1.x<-5或x>5提示: 原不等式化为,∴|x|>5 2.{x|-3 ∵A={x|1≤x≤2},B={x|(x-1)(x-a)≤0},∵,∴a>2 4.{x|x<-b或x>a},提示: 原不等式可化为(a-x)(x+b)<0,即(x-a)(x+b)>0,∵a+b>0,∴a>-b,∴x>a或x<-b. 三、 1.设长方形较短边长为xcm,则其邻边长(10-x)cm,显然0 ∴.2.当x≤0时,不等式无解,当x>0时,不等式化为,即 解得: 3.原不等式化为(ax-2)(x-2)>0,∵a>0,∴,当a=1时,,∴,∴{x|x∈R且x≠2},当a≠1时: 若a>1,则,∴,若0 4.∵恒正,∴不等式化为,即恒成立 ∴⊿,∴,∴1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 必修 不等式 题型 总结