八年级数学人教版第十一章全等三角形导学案Word文档格式.docx
- 文档编号:21201925
- 上传时间:2023-01-28
- 格式:DOCX
- 页数:34
- 大小:541.85KB
八年级数学人教版第十一章全等三角形导学案Word文档格式.docx
《八年级数学人教版第十一章全等三角形导学案Word文档格式.docx》由会员分享,可在线阅读,更多相关《八年级数学人教版第十一章全等三角形导学案Word文档格式.docx(34页珍藏版)》请在冰豆网上搜索。
(四)课堂小结(我的收获)
(1)知识方面:
(2)学习方法方面:
(五)达标测评
1.如图所示,若△OAD≌△OBC,∠O=65°
∠C=20°
则∠OAD=.
第1题图第2题图
2.如图,若△ABC≌△DEF,回答下列问题:
(1)若△ABC的周长为17cm,BC=6cm,DE=5cm,则DF=cm
(2)若∠A=50°
,∠E=75°
,则∠B=
3.如图,△AOB≌△COD,那么∠ABD与∠CDB相等吗?
为什么?
第3题图
﹡4.如图:
Rt△ABC中,∠A=90°
,若△ADB≌△EDB≌△EDC,则∠C=
12.2三角形全等的判定(SSS)
【学习目标】1、能自己试验探索出判定三角形全等的SSS判定定理。
2、会应用判定定理SSS进行简单的推理判定两个三角形全等
3、会作一个角等于已知角.
【学习重点】:
三角形全等的条件.
【学习难点】:
寻求三角形全等的条件.
【学习过程】:
一、自主学习
1、复习:
什么是全等三角形?
全等三角形有些什么性质?
如图,△ABC≌△DCB那么
相等的边是:
相等的角是:
2、讨论三角形全等的条件(动手画一画并回答下列问题)
(1).只给一个条件:
一组对应边相等(或一组对应角相等),画出的两个三角形一定全等吗?
(2).给出两个条件画三角形,有____种情形。
按下面给出的两个条件,画出的两个三角形一定全等吗?
①一组对应边相等和一组对应角相等
②两组对应边相等
③两组对应角相等
(3)、给出三个条件画三角形,有____种情形。
按下面给出三个条件,画出的两个三角形一定全等吗?
①三组对应角相等
②三组对应边相等
已知一个三角形的三条边长分别为6cm、8cm、10cm.你能画出这个三角形吗?
把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?
a.作图方法:
b.以小组为单位,把剪下的三角形重叠在一起,发现,这说明这些三角形都是的.
c.归纳:
三边对应相等的两个三角形,简写为“”或“”.
d、用数学语言表述:
在△ABC和
中,
∵
∴△ABC≌()
用上面的规律可以判断两个三角形.“SSS”是证明三角形全等的一个依据.
二、合作探究
1、[例]如图,△ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架.
求证:
△ABD≌△ACD.
证明:
∵D是BC
∴=
∴在△和△中
AB=
BD=
AD=
∴△ABD△ACD()
温馨提示:
证明的书写步骤:
①准备条件:
证全等时需要用的间接条件要先证好;
②三角形全等书写三步骤:
A、写出在哪两个三角形中,B、摆出三个条件用大括号括起来,C、写出全等结论。
2、如图,OA=OB,AC=BC.
求证:
∠AOC=∠BOC.
三、课堂检测
1、如图,AB=AE,AC=AD,BD=CE,求证:
△ABC≌ADE。
2、已知:
如图,AD=BC,AC=BD.求证:
∠OCD=∠ODC
3、尺规作图。
已知:
∠AOB.求作:
∠DEF,使∠DEF=∠AOB
四、课堂小结(我的收获)
五、达标测评
1、下列说法中,错误的有()个
(1)周长相等的两个三角形全等。
(2)周长相等的两个等边三角形全等。
(3)有三个角对应相等的两个三角形全等。
(4)有三边对应相等的两个三角形全等
A、1B、2C、3D、4
2.如图,点B、E、C、F在同一直线上,且AB=DE,AC=DF,BE=CF,请将下面说明ΔABC≌ΔDEF的过程和理由补充完整。
解:
∵BE=CF(_____________)
∴BE+EC=CF+EC
即BC=EF
在ΔABC和ΔDEF中
AB=________(________________)
__________=DF(_______________)
BC=__________
∴ΔABC≌ΔDEF(_____________)
3.如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由。
﹡4.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.
12.2三角形全等的判定(SAS)
【学习目标】
1、掌握三角形全等的“SAS”条件,能运用“SAS”证明简单的三角形全等问题
2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
3、积极投入,激情展示,做最佳自己。
学习重点:
SAS的探究和运用.
学习难点:
领会两边及其中一边的对角对应相等的两个三角形不一定全等.
【学习过程】
1、复习思考
(1)怎样的两个三角形是全等三角形?
全等三角形的性质是什么?
三角形全等的判定
(一)的内容是什么?
(2)上节课我们知道满足三个条件画两个三角形有4种情形,三个角对应相等;
三条边对应相等;
两角和一边对应相等;
两边和一角对应相等;
前两种情况已经研究了,今天我们来研究第三种两边和一角的情况,这种情况又要分两边和它们的夹角,两边及其一边的对角两种情况。
2、探究一:
两边和它们的夹角对应相等的两个三角形是否全等?
(1)动手试一试
△ABC
求作:
,使
,
(2)把△
剪下来放到△ABC上,观察△
与△ABC是否能够完全重合?
(3)归纳;
由上面的画图和实验可以得出全等三角形判定
(二):
两边和它们的夹角对应相等的两个三角形(可以简写成“”或“”)
(4)用数学语言表述全等三角形判定
(二)
∴△ABC≌
3、探究二:
两边及其一边的对角对应相等的两个三角形是否全等?
通过画图或实验可以得出:
三、当堂检测
1、如图,AD⊥BC,D为BC的中点,那么结论正确的有
A、△ABD≌△ACDB、∠B=∠CC、AD平分∠BACD、△ABC是等边三角形
2、如图,已知OA=OB,应填什么条件就得到△AOC≌△BOD
(再次温馨提示:
A、写出在哪两个三角形中,B、摆出三个条件用大括号括起来,C、写出全等结论。
)
四、课堂小结
1、两边和它们的夹角对应相等的两个三角形全等。
简写成“”或“”
2、到目前为止,我们一共探索出判定三角形全等的2种方法,它们分别是:
和
如图,已知CA=CB,AD=BD,M、N分别是CA、CB的中点,求证:
DM=DN
12.2三角形全等的判定(ASA和AAS)
1、掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题
3、积极投入,激情展示,体验成功的快乐。
已知两角一边的三角形全等探究.
灵活运用三角形全等条件证明.
(1).到目前为止,可以作为判别两三角形全等的方法有几种?
各是什么?
(2).在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?
三角形中已知两角一边又分成哪两种呢?
两角和它们的夹边对应相等的两个三角形是否全等?
(1)动手试一试。
△
=∠B,
=∠C,
=BC,(不写作法,保留作图痕迹)
由上面的画图和实验可以得出全等三角形判定(三):
两角和它们的夹边对应相等的两个三角形(可以简写成“”或“”)
(4)用数学语言表述全等三角形判定(三)
3、探究二。
两角和其中一角的对边对应相等的两三角形是否全等
(1)如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?
能利用前面学过的判定方法来证明你的结论吗?
(2)归纳;
由上面的证明可以得出全等三角形判定(四):
两个角和其中一角的对边对应相等的两个三角形(可以简写成“”或“”)
(3)用数学语言表述全等三角形判定(四)
1、例1、如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.
AD=AE.
变式训练:
点D在AB上,点E在AC上,BE⊥AC,CD⊥AB,AB=AC,求证:
BD=CE
3如图,在△ABC中,∠B=2∠C,AD是△ABC的角平分线∠1=∠C,求证AC=AB+CE
(1)今天我们又学习了两个判定三角形全等的方法是:
(2)三角形全等的判定方法共有
1、
2、
3、
4.满足下列哪种条件时,就能判定△ABC≌△DEF()
A.AB=DE,BC=EF,∠A=∠E;
B.AB=DE,BC=EF,∠C=∠F
C.∠A=∠E,AB=EF,∠B=∠D;
D.∠A=∠D,AB=DE,∠B=∠E
5.如图所示,已知∠A=∠D,∠1=∠2,那么要
得到△ABC≌△DEF,还应给出的条件是:
()
A.∠B=∠EB.ED=BC
C.AB=EFD.AF=CD
6.如5题图,在△ABC和△DEF中,AF=DC,∠A=∠D,
当_____________时,可根据“ASA”证明△ABC≌△DEF
12.2三角形全等的判定(HL)
1、理解直角三角形全等的判定方法“HL”,并能灵活选择方法判定三角形全等;
2.通过独立思考、小组合作、展示质疑,体会探索数学结论的过程,发展合情推理能力;
3.极度热情、高度责任、自动自发、享受成功。
教学重点:
运用直角三角形全等的条件解决一些实际问题。
教学难点:
熟练运用直角三角形全等的条件解决一些实际问题。
(1)、判定两个三角形全等的方法:
、、、
(2)、如图,Rt△ABC中,直角边是、,斜边是
(3)、如图,AB⊥BE于B,DE⊥BE于E,
①若∠A=∠D,AB=DE,
则△ABC与△DEF(填“全等”或“不全等”)
根据(用简写法)
②若∠A=∠D,BC=EF,
③若AB=DE,BC=EF,
则△ABC与△DEF(填“全等”或“不全等”)根据(用简写法)
④若AB=DE,BC=EF,AC=DF
2、如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?
(1)动手试一试。
Rt△ABC
Rt△
,使
=90°
=AB,
=BC
作法:
由上面的画图和实验可以得到判定两个直角三角形全等的一个方法
斜边与一直角边对应相等的两个直角三角形(可以简写成“”或“”)
(4)用数学语言表述上面的判定方法
在Rt△ABC和Rt
∴Rt△ABC≌Rt△
(5)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法“”、
“”、“”、“”、还有直角三角形特殊的判定方法“”
1、如图,AC=AD,∠C,∠D是直角,将上述条件标注在图中,你能说明BC与BD相等吗?
2、如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠ABC和∠DFE的大小有什么关系?
1、如图,△ABC中,AB=AC,AD是高,
则△ADB与△ADC(填“全等”或“不全等”)
2、判断两个直角三角形全等的方法不正确的有()
A、两条直角边对应相等B、斜边和一锐角对应相等
C、斜边和一条直角边对应相等D、两个锐角对应相等
3、如图,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,
AB=DC,BE=CF,你认为AB平行于CD吗?
说说你的理由
答:
AB平行于CD
理由:
∵AF⊥BC,DE⊥BC(已知)
∴∠AFB=∠DEC=°
(垂直的定义)
∵BE=CF,∴BF=CE
在Rt△和Rt△中
∴≌
()
∴=()
∴(内错角相等,两直线平行)
这节课你有什么收获呢?
与你的同伴进行交流
五、当堂检测
如图,CE⊥AB,DF⊥AB,垂足分别为E、F,
(1)若AC//DB,且AC=DB,则△ACE≌△BDF,根据
(2)若AC//DB,且AE=BF,则△ACE≌△BDF,根据
(3)若AE=BF,且CE=DF,则△ACE≌△BDF,根据
(4)若AC=BD,AE=BF,CE=DF。
则△ACE≌△BDF,根据
(5)若AC=BD,CE=DF(或AE=BF),则△ACE≌△BDF,根据
能力提升:
(学有余力的同学完成)
如图1,E、F分别为线段AC上的两个动点,且DE⊥AC于E点,BF⊥AC于F点,若AB=CD,AF=CE,BD交AC于M点。
(1)求证:
MB=MD,ME=MF;
(2)当E、F两点移动至图2所示的位置时,其余条件不变,上述结论是否成立?
若成立,给予证明。
12.3角的平分线的性质
(1)
1、经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理.
2、能运用角的平分线性质定理解决简单的几何问题.
3、极度热情、高度责任、自动自发、享受成功。
掌握角的平分线的性质定理
学习难点:
角平分线定理的应用。
什么是角的平分线?
怎样画一个角的平分线?
2.如右图,AB=AD,BC=DC, 沿着A、C画一条射线AE,AE就是∠BAD的角平分线,你知道为什么吗
3.根据角平分仪的制作原理,如何用尺规作角的平分线?
自学课本19页后,思考为什么要用大于
MN的长为半径画弧?
4.OC是∠AOB的平分线,点P是射线OC上的任意一点,
操作测量:
取点P的三个不同的位置,分别过点P作PD⊥OA,PE⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:
观察测量结果,猜想线段PD与PE的大小关系,写出结论
PD
PE
第一次
第二次
第三次
5、命题:
角平分线上的点到这个角的两边距离相等.
题设:
一个点在一个角的平分线上
结论:
这个点到这个角的两边的距离相等
结合第4题图形请你写出已知和求证,并证明命题的正确性
解后思考:
证明一个几何命题的步骤有那些?
6、用数学语言来表述角的平分线的性质定理:
如右上图,∵OC是∠AOB的平分线,点P是
∴
1、如图所示OC是∠AOB的平分线,P是OC上任意一点,问PE=PD?
为什么?
2、如图:
在△ABC中,∠C=90°
,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF;
CF=EB
在Rt△ABC中,BD平分∠ABC,DE⊥AB于E,则
⑴图中相等的线段有哪些?
相等的角呢?
⑵哪条线段与DE相等?
⑶若AB=10,BC=8,AC=6,求BE,AE的长和△AED的周长。
如图,在△ABC中,AC⊥BC,AD为∠BAC的平分线,DE⊥AB,AB=7㎝,AC=3㎝,求BE的
长
12.3角的平分线的性质
(2)
1、会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.
2、能应用这两个性质解决一些简单的实际问题.
角平分线的性质及其应用
灵活应用两个性质解决问题。
(1)、画出三角形三个内角的平分线
你发现了什么特点吗?
(2)、如图,△ABC的角平分线BM,CN相交于点P,求证:
点P到三边AB,BC,CA的距离相等。
2、求证:
到角的两边的距离相等的点在角的平分线上。
(提示:
先画图,并写出已知、求证,再加以证明)
3、要在S区建一个集贸市场,使它到公路,铁路
距离相等且离公路,铁路的交叉处500米,应建在何处?
(比例尺1:
20000)
1、比较角平分线的性质与判定
2、如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,求证∠1=∠2
51页练习题3、4、5题
1、已知△ABC中,∠A=60°
,∠ABC,∠ACB的平分线交于点O,则∠BOC的度数为
2、下列说法错误的是()
A、到已知角两边距离相等的点都在同一条直线上
B、一条直线上有一点到已知角的两边的距离相等,则这条直线平分已知角
C、到已知角两边距离相等的点与角的顶点的连线平分已知角
D、已知角内有两点各自到两边的距离相等,经过这两点的直线平分已知角
3、到三角形三条边的距离相等的点是()
A、三条中线的交点B、三条高线的交点
C、三条边的垂直平分线的交点D、三条角平分线的交点
4、课本52页第6题
想一想
如图,在四边形ABCD中,BC>
BA,AD=DC,BD平分∠ABC,求证:
∠A+∠C=180°
全等三角形复习(1、2)
1.知道全等三角形章知识结构图.
2.通过基本训练,巩固第十二章所学的基本内容.
3.通过典型例题的学习和综合运用,加深理解这一章所学的基本内容,发展能力.
知识结构图和基本训练.
典型例题和综合运用.
一、归纳总结,完善认知
1.总结本章知识点及相互联系.
2.三角形全等
探究
三角形
全等的
条件
二、基本训练,掌握双基
1.填空
(1)能够的两个图形叫做全等形,能够的两个三角形叫做全等三角形.
(2)把两个全等的三角形重合到一起,重合的顶点叫做,重合的边叫做,重合的角叫做.
(3)全等三角形的边相等,全等三角形的角相等.
(4)对应相等的两个三角形全等(边边边或).
(5)两边和它们的对应相等的两个三角形全等(边角边或).
(6)两角和它们的对应相等的两个三角形全等(角边角或).
(7)两角和其中一角的对应相等的两个三角形全等(角角边或).
(8)和一条对应相等的两个直角三角形全等(斜边、直角边或).
(9)角的上的点到角的两边的距离相等.
2.如图,图中有两对三角形全等,填空:
(1)△CDO≌,其中,CD的对应边是,
DO的对应边是,OC的对应边是;
(2)△ABC≌,∠A的对应角是,
∠B的对应角是,∠ACB的对应角是.
3.判断对错:
对的画“√”,错的画“×
”.
(1)一边一角对应相等的两个三角形不一定全等.()
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八年 级数 学人 第十一 全等 三角形 导学案