闵行区2016年高三数学文科一模试卷(含答案).doc
- 文档编号:2119347
- 上传时间:2022-10-27
- 格式:DOC
- 页数:12
- 大小:990KB
闵行区2016年高三数学文科一模试卷(含答案).doc
《闵行区2016年高三数学文科一模试卷(含答案).doc》由会员分享,可在线阅读,更多相关《闵行区2016年高三数学文科一模试卷(含答案).doc(12页珍藏版)》请在冰豆网上搜索。
闵行区2015学年第一学期高三年级质量调研考试
数学试卷(文科)
(满分150分,时间120分钟)
考生注意:
1.答卷前,考生务必在答题纸上将学校、班级、准考证号、姓名等填写清楚.
2.请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.
3.本试卷共有23道试题.
一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸上相应编号的空格
内直接填写结果,每个空格填对得4分,否则一律得零分.
1.若复数满足(为虚数单位),则.
2.若全集,函数的值域为集合,则.
3.方程的解为.
4.函数的最小正周期=.
5.不等式的解集为.
6.若一圆锥的底面半径为,体积是,则该圆锥的侧面积等于.
7.已知中,,,其中是基本单位向量,则的面积为.
8.在2017年的上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试.小明同学决定在生物、政治、历史三门中至多选择一门,那么小明同学的选科方案有种.
9.若是等差数列的前项和,且,则.
10.若函数,且在上单调递增,则实数的最小值等于.
11.若点、均在椭圆上运动,是椭圆的左、右焦点,则的最大值为.
12.已知函数,若实数互不相等,且满足,则的取值范围是.
13.我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:
设实数的不足近似值和过剩近似值分别为和(),则是的更为精确的不足近似值或过剩近似值.我们知道,若令,则第一次用“调日法”后得是的更为精确的过剩近似值,即,若每次都取最简分数,那么第四次用“调日法”后可得的近似分数为.
14.数列的前项和为,若对任意,都有,则数列的前项和为.
二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.
15.若,且,则“”是“等号成立”的().
(A)充要条件(B)充分不必要条件
(C)必要不充分条件(D)既非充分又非必要条件
16.设,则其反函数的解析式为().
(A)(B)
(C)(D)
17.的内角的对边分别为,满足,则角的范围是().
(A)(B)(C)(D)
18.函数的定义域为,图像如图1所示;函数的定义域为,图像如图2所示.,,则中元素的个数为().
(A)1(B)2(C)3(D)4
x
y
-1
O
1
2
1
图2
x
y
-1
O
1
1
-1
图1
三、解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.
C
A
B
D
A1
B1
C1
19.(本题满分12分)
如图,三棱柱中,侧棱底面,,,,为棱中点,证明异面直线与所成角为,并求三棱柱的体积.
20.(本题满分14分)本题共有2个小题,第
(1)小题满分8分,第
(2)小题满分6分.
O
x
y
A
B
如图,点、分别是角、的终边与单位圆的交点,.
(1)若,,求的值;
(2)证明:
.
21.(本题满分14分)本题共有2个小题,第
(1)小题满分6分,第
(2)小题满分8分.
x
y
A
B
M
N
P
O
大海
某沿海城市的海边有两条相互垂直的直线型公路、,海岸边界近似地看成一条曲线段.为开发旅游资源,需修建一条连接两条公路的直线型观光大道,且直线与曲线有且仅有一个公共点(即直线与曲线相切),如图所示.若曲线段是函数图像的一段,点到、的距离分别为千米和千米,点到的距离为千米,点到的距离为千米.以、分别为轴建立如图所示的平面直角坐标系.
(1)求曲线段的函数关系式,并指出其定义域;
(2)求直线的方程,并求出公路的长度(结果精确到米).
22.(本题满分16分)本题共有3个小题,第
(1)小题满分4分,第
(2)(3)小题满分各6分.
已知椭圆的中心在坐标原点,且经过点,它的一个焦点与抛物线的焦点重合,斜率为的直线交抛物线于两点,交椭圆于两点.
(1)求椭圆的方程;
(2)直线经过点,设点,且的面积为,求的值;
(3)若直线过点,设直线,的斜率分别为,且成等差数列,求直线的方程.
23.(本题满分18分)本题共有3个小题,第
(1)小题满分4分,第
(2)小题满分6分,第(3)小题满分8分.
已知数列的各项均为整数,其前项和为.规定:
若数列满足前项依次成公差为的等差数列,从第项起往后依次成公比为的等比数列,则称数列为“关联数列”.
(1)若数列为“关联数列”,求数列的通项公式;
(2)在
(1)的条件下,求出,并证明:
对任意,;
(3)若数列为“关联数列”,当时,在与之间插入个数,使这个数组成一个公差为的等差数列,求,并探究在数列{}中是否存在三项,,(其中成等差数列)成等比数列?
若存在,求出这样的三项;若不存在,说明理由.
闵行区2015学年第一学期高三年级质量调研考试数学试卷
参考答案和评分标准
一、(第1题至第14题)
1.2;2.;3.;4.;5.;
6.;7.;8.10;9.;10.;11.;
12.理、文;13.;14.理、文.
二、(第15题至第18题)15.A;16.C;17.B;18.C.
三、(第19题至第23题)19.(本题满分12分)
[证明]在三棱柱中,侧棱底面,,或它的补角即为异面直线与所成角,…………………………2分
由,,以及正弦定理得,即,…………4分
又,,…………6分
………………8分
所以异面直线与所成角的为.……………………10分
三棱柱的体积为.……………12分
20.(本题满分14分)本题共有2个小题,第
(1)小题满分8分,第
(2)小题满分6分.
[解]
(1)方法一:
,=…3分
,即,…………………………………6分
.…………………………………8分
方法二:
,,即,……………3分
,两边平方得,……………………………6分
.…………………………………8分
(2)[证明]由题意得,,
=………………10分
又因为与夹角为,
=………………………12分
综上成立.……………………………14分
21.(本题满分14分)本题共有2个小题,第
(1)小题满分6分,第
(2)小题满分8分.
[解]
(1)由题意得,则,故曲线段的函数关系式为,…4分
又得,所以定义域为.…………………………………6分
(2)(理科),设由得
,,…………8分
,得直线方程为,………10分
得,故点为线段的中点,
由即………………………………12分
得时,,所以,当时,经点至路程最近.……14分
(文科)由
(1)知,设直线方程为,
由得,…8分
,,所以直线方程为,………………10分
得、,……………………………………………………12分
所以千米.答:
公路的长度为千米.………14分
22.(本题满分16分)本题共有3个小题,第
(1)小题满分4分,第
(2)(3)小题满分各6分.
[解]
(1)设椭圆的方程为,由题设得,…2分
,椭圆的方程是…………………………4分
(2)设直线,由得
与抛物线有两个交点,,,
则……………………………6分
到的距离,又,8分
,故.………………………10分
(3)(理科),点关于轴的对称点为,
则直线,设得12分
直线,设得…14分
,又,,
.………………………16分
(文科)设直线,由消去得,
在椭圆内部,与椭圆恒有两个交点,设,则,由成等差数列得
…………………12分
,………………………14分
即,直线的方程为.………………………16分
23.(本题满分18分)本题共有3个小题,第
(1)小题满分4分,第
(2)小题满分6分,第(3)小题满分8分.
[解]
(1)为“6关联数列”,前6项为等差数列,从第5项起为等比数列
且,即,解得……………2分
(或).……………………4分
(2)由
(1)得(或)
……………………………………6分
,
,可见数列的最小项为,
证明:
,
列举法知当时,;………………………………………8分
当时,,设,则,.………………………10分
(3)(理科)为“关联数列”,且
,
……………………………12分
①当时,由得
,或.
②当时,由得,不存在…………………14分
③当时,由,
当时,;当时,;
当时,;当时,;
当时,;当时,;
当时,;当时,;
当时,舍去;当时,舍去
当时,舍去;当时,舍去………16分
综上所述,存在或或或.…………………18分
(文科)由
(1)可知,当时,,因为:
,故:
.……………………………13分
假设在数列中存在三项(其中成等差数列)成等比数列,则:
,即:
,(*)…15分
因为成等差数列,所以,(*)式可以化简为,
即:
,故,这与题设矛盾.
所以在数列中不存在三项(其中成等差数列)成等比数列.…18分
(或:
因为下标成等差数列的等差数列一定还是成等差数列,而又要求成等比数列,则必为非零常数列,而显然不是非零的常数,所以不存在.)
高三年级质量调研考试文科数学试卷第12页共12页
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 闵行区 2016 年高 数学 文科 试卷 答案