最新北师大课标版七年级数学上册《应用一元一次方程水箱变高了》教案1优质课一等奖教学设计Word文档下载推荐.docx
- 文档编号:21187306
- 上传时间:2023-01-28
- 格式:DOCX
- 页数:6
- 大小:80.03KB
最新北师大课标版七年级数学上册《应用一元一次方程水箱变高了》教案1优质课一等奖教学设计Word文档下载推荐.docx
《最新北师大课标版七年级数学上册《应用一元一次方程水箱变高了》教案1优质课一等奖教学设计Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《最新北师大课标版七年级数学上册《应用一元一次方程水箱变高了》教案1优质课一等奖教学设计Word文档下载推荐.docx(6页珍藏版)》请在冰豆网上搜索。
多媒体课件、细铁丝、土豆、水杯.
教学过程
一、创新情境,引入新课
教师:
(向同学们出示土豆)同学们认识这是什么吗?
学生:
土豆!
谁能在最短的时间内测出它的体积是多少?
学生讨论,但找不到好的方法.
如果,我再给大家一个带有容积刻度并且能容下土豆的水杯,你想到办法了吗?
生1:
(恍然大悟)把水杯装满水,把土豆放入水杯中,溢出水的体积就是土豆的体积!
生2:
先倒入一部分水,记下刻度,把土豆放入杯中,让水淹没土豆,水比刚才上升的体积就是土豆的体积!
(学生通过直观感知、操作等活动,寻找图形问题中的等量关系.)
二、合作探究,展示交流
探究1:
等体积问题(多媒体展示)
很好,我这儿有一个问题:
某居民楼顶有一个底面直径和高均为4m的圆柱形储水箱、现该楼进行维修改造,为减少楼顶原有储水箱的占地面积,需要将它的底面直径由4m减少为3.2m,那么在容积不变的前提下,水箱的高度将由原先的4m增高为多少米?
你能帮他吗?
用一元一次方程来解、这个问题的等量关系:
旧水箱的体积=新水箱的体积.
同学们分析得很好,列方程时,关键是找出问题中的等量关系.下面我们如果设新水箱的高为xm,通过填写下表来看一下旧水箱的体积和新水箱的体积、
旧水箱
新水箱
底面半径/m
2
1、6
高/m
4
x
体积/m3
π×
22×
1、62×
(学生计算填表,让一位同学说出自己的结果)
旧水箱的圆柱的底面半径为4÷
2=2m,高为4米,所以旧水箱的圆柱的体积为π×
4m3;
新水箱的圆柱的底面半径为3.2÷
2=1.6m,高设为xm,所以新水箱的体积为π×
1.62×
x.由等量关系我们便可得到方程:
4=π×
x.
列出方程我们只是走完“万里长征”重要的第一步,如何解这个方程呢?
将π换成3.14,算出x的系数π×
22,然后将系数化为1就解出了方程.
我认为应先观察方程的特点,左右两边都含有π,可用等式的第二个性质,方程两边同时除以π,可使方程变得简单.
这位同学的想法很好、下面我们共同把这个题的过程写一下.
解:
设新水箱圆柱的高为x厘米,
根据题意,列出方程π×
x,
解得x=
.
答:
高变成了
米.
通过本题的解答过程,你能总结一下列一元一次方程解决实际问题的步骤吗?
(学生认真思考后,小组内交流、教师适时引导共同归纳出列一元一次方程解决实际问题的步骤:
理解题意、寻找等量关系、设未知数列方程、解方程、作答.)
设计意图:
设置丰富的问题情境,使学生经历模型化的过程,激发学生的好奇心和主动学习的欲望.
探究2:
周长相等问题
用你手中的铁丝围成一个四边形,在所有的四边形中他们的周长有什么特点?
不变,都相等.
所围成的四边形的面积变化吗?
动手操作试一试.
(学生动手操作,操作完成后让学生汇报结果)
面积发生变化.
下面以小组为单位,借助你手中的铁丝,依据上一题的解题经验,小组内分工合作完成下面问题.
例:
用一根长为10米的铁丝围成一个长方形.
(1)使得该长方形的长比宽多1.4米,此时长方形的长、宽各为多少米?
(2)使得该长方形的长比宽多0.8米,此时长方形的长、宽各为多少米?
它围成的长方形与
(1)中所围成的长方形相比,面积有什么变化?
(3)使得该长方形的长与宽相等,即围成一个正方形,此时正方形的边长是多少米?
它所围成的面积与
(2)中相比又有什么变化?
教学建议:
小组讨论解题过程中,教师巡视课堂,指导、参与学生的讨论制作,帮助有学习有难的个人或小组.在讨论解答完成后,让小组选代表阐述解题的步骤、思路并展示自己小组所做的长方形(或正方形),指导学生反思各组的解答过程并讨论:
解决这道题的关键是什么?
从解这道题中你有何收获和体验、通过猜测、验证说明三个长方形面积变化的规律,教师及时引导学生给予评价,表扬鼓励,同时用多媒体展示解题步骤,进一步规范学生的解题格式.
(1)设此时长方形的宽为xm,则它的长为(x+1.4)m,
根据题意,得x+(x+1.4)=10×
,
解这个方程,得x=1.8,
x+1.4=1.8+1.4=3.2,
此时长方形的长为3.2m,宽为1.8m.
(2)此时长方形的宽为xm,则它的长为(x+0.8)m,
根据题意,得x+(x+0.8)=10×
、解这个方程,得x=2.1,
x+0.8=2.1+0.8=2.9,
此时长方形的长为2.9m,宽为2.1m,面积为2.1×
2.9=6.09m2,
(1)中长方形的面积为3、2×
1.8=5.76m2,此时长方形的面积比
(1)中长方形面积增大6.09-5.76=0.33m2.
(3)设正方形的边长为xm,
根据题意,得4x=10×
,解这个方程,得x=2.5,
正方形的边长为2.5m,
正方形的面积为2.5×
2.5=6.25m2,比
(2)中面积增大6.25-6.09=0.16m2.
我们解答这个题的关键是我们在改变长方形的长和宽的同时,长方形的周长不变,始终是铁丝的长度10米,由此便可建立“等量关系”,但是我们可以发现,虽然长方形的周长不变,改变长方形的长和宽,长方形的面积却在发生变化,而且围成正方形的时候面积达到最大.
通过例题让学生再次感受找到题目中的等量关系是列方程解应用题的关键,让学生经历知识的探索、发现、掌握、应用的过程、使学生体验“数学化”过程,使学生在实际动手计算、制作中体验合作的愉快及成功的喜悦,进一步理性地感受上一个环节中得出的结论,培养学生数学思考的严谨性,判断推理的科学性,语言表述的准确性.
三、训练反馈,应用提升
1、墙上钉着一根彩绳围成的梯形形状的饰物,如图实线所示(单位:
cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?
用实物演示图形的变化过程、引导学生思考:
(1)问题中的已知量和未知量?
(2)在图形的变化过程中哪些量在改变?
哪些量没有变?
利用铁丝动手操作,观察图形变化的过程;
弄清题意,积极回答老师所提问题;
独立思考,解决问题,积极争取发言,阐述自己的解题思路、计算后说出答案.
设长方形的长为x厘米,根据题意得,2(x+10)=10×
4+6×
2,
解这个方程,得x=16.
因此,小颖所钉长方形的长为16厘米,宽为10厘米.
通过分析、演示,观察、思考,让学生直观的感受的在图形的变化过程中各个量的变与不变,从而逐步的领悟到寻找等量关系是列方程解决应用问题的关键.
课堂小结
通过本节课的学习,你有哪些收获?
还有那些困惑?
先让学生畅所欲言,着重引导学生总结以下三个方面:
1、通过对“水箱变高了”的了解,我们知道“旧水箱的体积=新水箱的体积”,“变形前周长等于变形后周长”是解决此类问题的关键,即变的是什么,不变的是什么.
2、遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.
3、解出的数学问题要联系生活实际问题来检验它的结果的合理性.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用一元一次方程水箱变高了 最新 北师大 课标版 七年 级数 上册 应用 一元一次方程 水箱 教案 优质课 一等奖 教学 设计
链接地址:https://www.bdocx.com/doc/21187306.html