北师大七年级上《第3章整式及其加减》单元测试含答案解析Word下载.docx
- 文档编号:21132326
- 上传时间:2023-01-27
- 格式:DOCX
- 页数:31
- 大小:224.85KB
北师大七年级上《第3章整式及其加减》单元测试含答案解析Word下载.docx
《北师大七年级上《第3章整式及其加减》单元测试含答案解析Word下载.docx》由会员分享,可在线阅读,更多相关《北师大七年级上《第3章整式及其加减》单元测试含答案解析Word下载.docx(31页珍藏版)》请在冰豆网上搜索。
(3)3+4+5+6+7=52;
(4)4+5+6+7+8+9+10=72;
…
请你根据观察得到的规律判断下列各式正确的是( )
A.1005+1006+1007+…+3016=20112
B.1005+1006+1007+…+3017=20112
C.1006+1007+1008+…+3016=20112
D.1007+1008+1009+…+3017=20112
10.计算2m2n﹣3m2n的结果为( )
A.﹣1B.﹣
C.﹣m2nD.﹣6m4n2
二、填空题
11.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:
23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;
33=7+9+11;
43=13+15+17+19;
…;
若63也按照此规律来进行“分裂”,
则63“分裂”出的奇数中,最大的奇数是 .
12.若a2+a=0,则2a2+2a+2013= .
13.如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c= ,d= .
14.已知a与l﹣2b互为相反数,则代数式2a﹣4b﹣3的值是 .
15.观察下列各式:
(x﹣1)(x+1)=x2﹣1
(x﹣1)(x2+x+1)=x3﹣1
(x﹣1)(x3+x2+x+1)=x4﹣1,
根据前面各式的规律可得(x﹣1)(xn+xn﹣1+…+x+1)= (其中n为正整数).
16.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有 个.
17.对整数按以下方法进行加密:
每个数位上的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10﹣a.如果一个数按照上面的方法加密后为473392,则该数为 .
18.若x2﹣3x+1=0,则
的值为 .
19.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(3a+b),宽为(a+2b)的大长方形,则需要C类卡片 张.
20.若:
A32=3×
2=6,A53=5×
4×
3=60,A54=5×
3×
2=120,A64=6×
5×
3=360,…,观察前面计算过程,寻找计算规律计算
A73= (直接写出计算结果),并比较A103 A104(填“>”或“<”或“=”)
三、解答题
21.研究下列算式,你会发现有什么规律?
①13=12
②13+23=32
③13+23+33=62
④13+23+33+43=102
⑤13+23+33+43+53=152…
(1)根据以上算式的规律,请你写出第⑥个算式;
(2)用含n(n为正整数)的式子表示第n个算式;
(3)请用上述规律计算:
73+83+93+…+203.
22.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=
.
如果图1中的圆圈共有12层,
(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是 ;
(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.
23.如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.
(1)按图示规律,第一图案的长度L1= ;
第二个图案的长度L2= ;
(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度Ln(m)之间的关系;
(2)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数.
24.在计算1+4+7+10+13+16+19+22+25+28时,我们发现,从第一个数开始,后面的每个数与它的前面一个数的差都是一个相等的常数,具有这种规律的一列数,除了直接相加外,我们还可以用下列公式来求和S,S=
(其中n表示数的个数,a1表示第一个数,an表示最后一个数),所以1+4+7+10+13+16+19+22+25+28=
=145.用上面的知识解答下面问题:
某公司对外招商承包一分公司,符合条件的两企业A、B分别拟定上缴利润方案如下:
A:
每年结算一次上缴利润,第一年上缴1.5万元,以后每年比前一年增加1万元:
B:
每半年结算一次上缴利润,第一个半年上缴0.3万元,以后每半年比前半年增加0.3万元.
(1)如果承包期限为4年,请你通过计算,判断哪家企业上缴利润的总金额多?
(2)如果承包期限为n年,试用n的代数式分别表示两企业上缴利润的总金额.(单位:
万元)
25.2(3x2﹣2xy+4y2)﹣3(2x2﹣xy+2y2)其中x=2,y=1.
26.有足够多的长方形和正方形卡片,如下图:
(1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.
这个长方形的代数意义是 .
(2)小明想用类似方法解释多项式乘法(a+3b)(2a+b)=2a2+7ab+3b2,那么需用2号卡片 张,3号卡片 张.
27.化简,求值
①3(x2﹣2xy)﹣[3x2﹣2y﹣2(3xy+y)]
②已知A=3a2+b2﹣5ab,B=2ab﹣3b2+4a2,先求﹣B+2A,并求当a=﹣
,b=2时,﹣B+2A的值.
28.某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:
当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.
(1)试用含a的代数式填空:
①涨价后,每个台灯的销售价为 元;
②涨价后,每个台灯的利润为 元;
③涨价后,商场的台灯平均每月的销售量为 台.
(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.
29.
(1)拼一拼,画一画:
请你用4个长为a,宽为b的矩形拼成一个大正方形,并且正中间留下一个洞,这个洞恰好是一个小正方形.
(2)用不同方法计算中间的小正方形的面积,聪明的你能发现什么?
(3)当拼成的这个大正方形边长比中间小正方形边长多3cm时,它的面积就多24cm2,求中间小正方形的边长.
30.下图的数阵是由全体奇数排成:
(1)图中平行四边形框内的九个数之和与中间的数有什么关系?
(2)在数阵图中任意作一类似
(1)中的平行四边形框,这九个数之和还有这种规律吗?
请说出理由;
(3)这九个数之和能等于1998吗?
2005,1017呢?
若能,请写出这九个数中最小的一个;
若不能,请说出理由.
参考答案与试题解析
【考点】规律型:
图形的变化类.
【专题】规律型.
【分析】观察图形,发现:
黑色纸片在4的基础上,依次多3个;
根据其中的规律,用字母表示即可.
【解答】解:
第个图案中有黑色纸片3×
1+1=4张
第2个图案中有黑色纸片3×
2+1=7张,
第3图案中有黑色纸片3×
3+1=10张,
…
第n个图案中有黑色纸片=3n+1张.
当n=6时,3n+1=3×
6+1=19
故选D.
【点评】此题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系.
数字的变化类.
【分析】根据题意可知:
当有四个台阶时,可分情况讨论:
①逐级上,那么有一种走法;
②上一个台阶和上二个台阶合用,那么有共三种走法;
③一步走两个台阶,只有一种走法;
所以可求得有五种走法.注意分类讨论思想的应用.
②上一个台阶和上二个台阶合用,那么有:
1、1、2;
1、2、1;
2、1、1;
共三种走法;
③一步走两个台阶,只有一种走法:
2、2;
综上可知:
共5种走法.
故选C.
【点评】本题属规律性题目,解答此题的关键是根据所给的条件,列举出可能走的方法解答.
【分析】由第五行和第五列可以知道三角内不可以填2,6,3,4,再综合其他的即可得出答案.
由第五行和第五列可以知道三角内不可填2,6,3,4,
因为第六行和第六列都有一个1所以第六行和第五列都不能填1,
即三角的左边应填1.第五行和第六列都有4,所以可知第六行第五列填4.
即三角内填2或5.
因为三角的左边是1,第五列又有一个1,所以三角上边的那个大格的第六列就是1.
因为第四行有一个2,所以第三行,第四列填2.
所以第四行,第四列或第四行第五列有一个填5,故三角内不能填5.
故:
答案选D.
【点评】此题主要考试的是同学们的逻辑思维和对图形的观察能力.
【专题】探究型.
【分析】将a1=
代入an=
得到a2的值,将a2的值代入,an=
得到a3的值,将a3的值代入,an=
得到a4的值.
将a1=
得到a2=
=
,
将a2=
得到a3=
将a3=
得到a4=
故选A.
【点评】本题考查了数列的变化规律,重点强调了后项与前项的关系,能理解通项公式并根据通项公式算出具体数.
【专题】压轴题;
规律型.
【分析】本题考查探究、归纳的数学思想方法.题中明确指出:
任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:
(n+1)2,两个三角形数分别表示为
n(n+1)和
(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.
根据规律:
正方形数可以用代数式表示为:
(n+1)2,
两个三角形数分别表示为
(n+1)(n+2),
只有D、49=21+28符合,
【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
【考点】代数式求值.
整体思想.
【分析】观察题中的两个代数式,可以发现,2x2﹣5x=2(
),因此可整体求出式
的值,然后整体代入即可求出所求的结果.
∵
=6
∴2x2﹣5x+6=2(
)+6
=2×
6+6=18,故选C.
【点评】代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式
的值,然后利用“整体代入法”求代数式的值.
【分析】根据题意得到每一行是4个偶数,奇数行从第2列往后排,偶数行从第4列往前排,然后用2000除以2得到2000是第1000个偶数,再用1000÷
4得250,于是可判断2000在第几行第几列.
因为2000÷
2=1000,
所以2000是第1000个偶数,
而1000÷
4=250,
第1000个偶数是250行最大的一个,
偶数行的数从第4列开始向前面排,
所以第1000个偶数在第1列,
所以2000应在第250行第一列.
答:
在第250行第1列.
故选:
C.
【点评】本题考查了关于数字的变化规律:
先要观察各行各列的数字的特点,得出数字排列的规律,然后确定所给数字的位置.
【分析】第一行有1个数,第二行有2个数,那么第9行就有9个数,偶数行中间的两个数是相等的.第九行正中间的数应是第九行的第5个数.应该=第8行第4个数+第8行第5个数=2×
第8行第4个数=2×
(第7行第3个数+第7行第4个数)=2×
[(第6行第2个数+第6行第3个数)+(第6行第3个数+第6行第4个数)]=2×
(第6行第2个数+2第6行第3个数+第6行第4个数)=2×
[5+2×
(第5行第2个数+第5行第3个数)+(第5行第3个数+第5行第4个数)]=2×
(4+6)+6+4]=70.
2×
故选B.
【点评】杨辉三角最本质的特征是:
它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.
【专题】应用题.
【分析】根据已知条件找出数字规律:
第n个等式是n+(n+1)+(n+2)+…+(n+2n﹣2)=(2n﹣1)2,其中n为正整数,依次判断各个式子即可得出结果.
根据
(1)1=12;
(4)4+5+6+7+8+9+10=7×
7
可得出:
n+(n+1)+(n+2)+…+(n+2n﹣2)=(2n﹣1)2,
依次判断各选项,只有C符合要求,
【点评】本题主要考查了根据已知条件寻找数字规律,难度适中.
【考点】合并同类项.
【专题】计算题.
【分析】根据合并同类项的法则:
把同类项的系数相加,所得结果作为系数,字母和字母的指数不变计算即可.
2m2n﹣3m2n=(2﹣3)m2n=﹣m2n.
【点评】本题考查了合并同类项的法则,解题时牢记法则是关键,此题比较简单,易于掌握.
则63“分裂”出的奇数中,最大的奇数是 41 .
【分析】首先发现奇数的个数与前面的底数相同,再得出每一组分裂中的第一个数是底数×
(底数﹣1)+1,问题得以解决.
由23=3+5,分裂中的第一个数是:
3=2×
1+1,
33=7+9+11,分裂中的第一个数是:
7=3×
2+1,
43=13+15+17+19,分裂中的第一个数是:
13=4×
3+1,
53=21+23+25+27+29,分裂中的第一个数是:
21=5×
4+1,
63=31+33+35+37+39+41,分裂中的第一个数是:
31=6×
5+1,
所以63“分裂”出的奇数中最大的是6×
5+1+2×
(6﹣1)=41.
故答案为:
41.
【点评】本题是对数字变化规律的考查,找出分裂的第一个数的变化规律是解题的关键,也是求解的突破口.
12.若a2+a=0,则2a2+2a+2013= 2013 .
【分析】把代数式化为2(a2+a)+2013,把a2+a=0代入求出即可.
∵a2+a=0,
∴2a2+2a+2013
=2(a2+a)+2013
0+2013
=2013.
2013.
【点评】本题考查了求代数式的值的应用,注意:
把a2+a当作一个整体进行代入,题目比较典型,难度也不大.
13.如图是与杨辉三角有类似性质的﹣三角形数垒,a、b、c、d是相邻两行的前四个数(如图所示),那么当a=8时,c= 9 ,d= 37 .
图表型.
【分析】观察发现:
第n行的第一个数和行数相等,第二个数是1+1+2+…+n﹣1=
+1.所以当a=8时,则c=9,d=9×
4+1=37.
当a=8时,c=9,d=9×
【点评】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此题要根据已知的数据发现各行的第一个数和第二个数的规律.
14.已知a与l﹣2b互为相反数,则代数式2a﹣4b﹣3的值是 ﹣5 .
【考点】相反数;
代数式求值.
【专题】整体思想.
【分析】根据相反数的意义得出a+1﹣2b=0,求出a﹣2b的值,变形后代入即可.
∵a与l﹣2b互为相反数,
∴a+1﹣2b=0,
∴a﹣2b=﹣1,
∴2a﹣4b﹣3=2(a﹣2b)﹣3=2×
(﹣1)﹣3=﹣5.
﹣5.
【点评】本题考查了相反数的意义和代数式求值的应用,根据相反数的意义求出a+2b的值,把a+2b当作一个整体,即整体思想的应用.
根据前面各式的规律可得(x﹣1)(xn+xn﹣1+…+x+1)= xn+1﹣1 (其中n为正整数).
【考点】平方差公式.
【分析】观察其右边的结果:
第一个是x2﹣1;
第二个是x3﹣1;
…依此类推,则第n个的结果即可求得.
(x﹣1)(xn+xn﹣1+…x+1)=xn+1﹣1.
xn+1﹣1.
【点评】本题考查了平方差公式,发现规律:
右边x的指数正好比前边x的最高指数大1是解题的关键.
16.在2001、2002、…、2010这10个数中,不能表示成两个平方数差的数有 3 个.
【考点】完全平方数.
【专题】创新题型.
【分析】首先将符合条件的整数分解成两整数的和与这两整数的差的积,再由整数的奇偶性,判断这个符合条件的整数,是奇数或是能被4整除的数,从而找出符合条件的整数的个数.在2001、2002、…、2010这10个数中,奇数有5个,能被4整除的有2个,所以不能表示成两个平方数差的数有10﹣5﹣2=3个.
对x=n2﹣m2=(n+m)(n﹣m),(m<n,m,n为整数)
因为n+m与n﹣m同奇同偶,所以x是奇数或是4的倍数,
在2001、2002、…、2010这10个数中,奇数有5个,能被4整除的数有2个,
所以能表示成两个平方数差的数有5+2=7个,
则不能表示成两个平方数差的数有10﹣7=3个.
3.
【点评】本题考查了平方差公式的实际运用,使学生体会到平方差公式在判断数的性质方面的作用.
每个数位上的数字变为与7乘积的个位数字,再把每个数位上的数字a变为10﹣a.如果一个数按照上面的方法加密后为473392,则该数为 891134 .
【考点】数的十进制.
【专题】数字问题;
新定义.
【分析】根据题意算出从0到9加密后对应的数字,根据所给加密后的数字可得原数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第3章整式及其加减 北师大 年级 整式 及其 加减 单元测试 答案 解析