历年安徽高考数学理试卷答案.doc
- 文档编号:2108597
- 上传时间:2022-10-26
- 格式:DOC
- 页数:27
- 大小:3.79MB
历年安徽高考数学理试卷答案.doc
《历年安徽高考数学理试卷答案.doc》由会员分享,可在线阅读,更多相关《历年安徽高考数学理试卷答案.doc(27页珍藏版)》请在冰豆网上搜索。
2009年普通高等学校招生全国统一考试(安徽卷)
数学(理)试题
第I卷(选择题共50分)
一.选择题:
本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i是虚数单位,若,则乘积的值是(B)
(A)-15(B)-3(C)3(D)15
(2)若集合则A∩B是(D)
(A)(B)
(C)(D)
(3)下列曲线中离心率为的是(B)
(A)(B)(C)(D)
(4)下列选项中,p是q的必要不充分条件的是(A)
(A)p:
>b+d,q:
>b且c>d
(B)p:
a>1,b>1,q:
的图像不过第二象限
(C)p:
x=1,q:
(D)p:
a>1,q:
在上为增函数
(5)已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大值的是(B)
(A)21(B)20(C)19(D)18
(6)设<b,函数的图像可能是(C)
(7)若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是(A)(A)(B)(C)(D)
(8)已知函数,的图像与直线的两个相邻交点的距离等于,则的单调区间是(C)
(A)(B)
(C)(D)
(9)已知函数在R上满足,则曲线在点处的切线方程是(A)
(A)(B)(C)(D)
(10)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于(D)
(A)(B)(C)(D)
二.填空题:
本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
(11)若随机变量~,则=________.
解答:
(12)以直角坐标系的原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的长度单位。
已知直线的极坐标方程为,它与曲线(为参数)相交于两点A和B,则|AB|=_______.
解答:
(13)程序框图(即算法流程图)如图所示,其输出结果是_______.
解答:
127
(14)给定两个长度为1的平面向量和,它们的夹角为.如图所示,点C在以O为圆心的圆弧上变动.若其中,则的最大值是=________.
解答:
2
(15)对于四面体ABCD,下列命题正确的是_________(写出所有正确命题的编号)。
相对棱AB与CD所在的直线异面;
由顶点A作四面体的高,其垂足是BCD的三条高线的交点;
若分别作ABC和ABD的边AB上的高,则这两条高所在的直线异面;
分别作三组相对棱中点的连线,所得的三条线段相交于一点;
最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱。
解答:
三.解答题:
本大题共6小题,共75分。
解答应写出文字说明、证明过程或演算步骤。
解答写在答题卡的指定区域内。
(16)(本小题满分12分)
在ABC中,sin(C-A)=1,sinB=。
(I)求sinA的值;
(II)设AC=,求ABC的面积。
(16)本小题主要考查三角恒等变换、正弦定理、解三角形等有关知识,考查运算求解能力。
本小题满分12分
解:
(I)由知。
又所以即
故
(II)由(I)得:
又由正弦定理,得:
所以
(17)(本小题满分12分)
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的。
对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是。
同样也假定D受A、B和C感染的概率都是。
在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量。
写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).
(17)本小题主要考查古典概型及其概率计算,考查取有限个值的离散型随机变量及其分布列和均值的概念,通过设置密切贴近现实生活的情境,考查概率思想的应用意识和创新意识。
体现数学的科学价值。
本小题满分12分。
X
1
2
3
P
解:
随机变量X的分布列是
X的均值。
附:
X的分布列的一种求法
共有如下6种不同的可能情形,每种情形发生的概率都是:
①
②
③
④
⑤
⑥
A-B-C-D
A—B—C
└D
A—B—C
└D
A—B—D
└C
A—C—D
└B
在情形①和②之下,A直接感染了一个人;在情形③、④、⑤之下,A直接感染了两个人;在情形⑥之下,A直接感染了三个人。
(18)(本小题满分13分)
如图,四棱锥F-ABCD的底面ABCD是菱形,其对角线AC=2,
BD=,AE、CF都与平面ABCD垂直,AE=1,CF=2。
(I)求二面角B-AF-D的大小;
(II)求四棱锥E-ABCD与四棱锥F-ABCD公共部分的体积。
(18)本小题主要考查直线与直线、直线与平面、平面与平面的位置关系、相交平面所成二面角以及空间几何体的体积计算等知识,考查空间想象能力和推理论证能力、利用综合法或向量法解决立体几何问题的能力。
本小题满分13分。
解:
(I)(综合法)连接AC、BD交于菱形的中心O,过O作OG⊥AF,G为垂足。
连接BG、DG。
由BD⊥AC,BD⊥CF,得:
BD⊥平面ACF,故BD⊥AF.
于是AF⊥平面BGD,所以BG⊥AF,DG⊥AF,∠BGD为二面角B-AF-D的平面角。
由FC⊥AC,FC=AC=2,得∠FAC=,OG=.
由OB⊥OG,OB=OD=,得∠BGD=2∠BGO=.
(向量法)以A为坐标原点,、、方向分别为轴、轴、轴的正方向建立空间直角坐标系(如图).于是
设平面ABF的法向量,则由得。
令得,
同理,可求得平面ADF的法向量。
由知,平面ABF与平面ADF垂直,
二面角B-AF-D的大小等于。
(II)连EB、EC、ED,设直线AF与直线CE相交于点H,则四棱锥E-ABCD与四棱锥F-ABCD的公共部分为四棱锥H-ABCD。
过H作HP⊥平面ABCD,P为垂足。
因为EA⊥平面ABCD,FC⊥平面ABCD,,所以平面ACFE⊥平面ABCD,
从而
由得。
又因为
故四棱锥H-ABCD的体积
(19)(本小题满分12分)
已知函数,讨论的单调性.
(19)本小题主要考查函数的定义域、利用导数等知识研究函数的单调性,考查分类讨论的思想方法和运算求解的能力。
本小题满分12分。
解:
的定义域是(0,+),
设,二次方程的判别式.
①当,即时,对一切都有.
此时在上是增函数。
②当,即时,仅对有,对其余的都有,此时在上也是增函数。
③当,即时,
方程有两个不同的实根,,.
+
0
_
0
+
单调递增↑
极大
单调递减↓
极小
单调递增↑
此时在上单调递增,在是上单调递减,在上单调递增.
(20)(本小题满分13分)
点在椭圆上,直线与直线垂直,O为坐标原点,直线OP的倾斜角为,直线的倾斜角为.
(I)证明:
点是椭圆与直线的唯一交点;
(II)证明:
构成等比数列。
(20)本小题主要考查直线和椭圆的标准方程和参数方程,直线和曲线的几何性质,等比数列等基础知识。
考查综合运用知识分析问题、解决问题的能力。
本小题满分13分。
解:
(I)(方法一)由得代入椭圆,
得.
将代入上式,得从而
因此,方程组有唯一解,即直线与椭圆有唯一交点P.
(方法二)显然P是椭圆与的交点,若Q是椭圆与的交点,代入的方程,得
即故P与Q重合。
(方法三)在第一象限内,由可得
椭圆在点P处的切线斜率
切线方程为即。
因此,就是椭圆在点P处的切线。
根据椭圆切线的性质,P是椭圆与直线的唯一交点。
(II)的斜率为的斜率为
由此得构成等比数列。
(21)(本小题满分13分)
首项为正数的数列满足
(I)证明:
若为奇数,则对一切都是奇数;
(II)若对一切都有,求的取值范围。
(21)本小题主要考查数列、数学归纳法和不等式的有关知识,考查推理论证、抽象概括、运算求解和探究能力,考查学生是否具有审慎思维的习惯和一定的数学视野。
本小题满分13分。
解:
(I)已知是奇数,假设是奇数,其中为正整数,
则由递推关系得是奇数。
根据数学归纳法,对任何,都是奇数。
(II)(方法一)由知,当且仅当或。
另一方面,若则;若,则
根据数学归纳法,
综合所述,对一切都有的充要条件是或。
(方法二)由得于是或。
因为所以所有的均大于0,因此与同号。
根据数学归纳法,,与同号。
因此,对一切都有的充要条件是或。
2010年普通高等学校招生全国统一考试(安徽卷)
理科数学测试
第Ⅰ卷(选择题共50分)
一、选择题:
本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)是虚数单位,
(A) (B) (C) (D)
(2)若集合,则
(A) (B)
(C) (D)
(3)设向量,则下列结论中正确的是
(A) (B) (C)垂直 (D)
(4)若是R上周期为5的奇函数,且满足则=
(A)-1 (B)1 (C)-2 (D)2
(5)双曲线方程为,则它的右焦点坐标为
(A) (B) (C) (D)
(6)设,二次函数的图象可能是
(7)设曲线C的参数方程为(为参数),
直线的方程为,则曲线C到直线的距
离为的点的个数为
(A)1 (B)2
(C)3 (D)4
(8)一个几何全体的三视图如图,该几何体的表面积为
(A)280 (B)292
(C)360 (D)372
(9)动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知定时t=0时,点A的坐标是,则当时,动点A的纵坐标y关于t(单位:
秒)的函数的单调递增区间是
(A)[0,1] (B)[1,7] (C)[7,12] (D)[0,1]和[7,12]、
(10)设是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是
(A) (B)
(C) (D)
第Ⅱ卷(非选择题共100分)
二、填空题:
本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.
(11)命题“对任何”的否定是.
(12)的展开式中,的系数等于.
(13)设满足约束条件若目标函数的最大值为8,则的最小值为.
(14)如图所示,程序框图(算法流程图)的输出值.
(15)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红
球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,
分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球
的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球
是红球的事件,则下列结论中正确的是 (写出所有正确结
论的编号).
①;
②;
③事件B与事件A1相互独立;
④A1,A2,A3是两两互斥的事件;
⑤的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关.
三、解答题:
本大题共6小题,共75分.解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 历年 安徽 高考 学理 试卷 答案