公务员考试行测数学运算16种题型_精品文档.doc
- 文档编号:210816
- 上传时间:2022-10-06
- 格式:DOC
- 页数:62
- 大小:575KB
公务员考试行测数学运算16种题型_精品文档.doc
《公务员考试行测数学运算16种题型_精品文档.doc》由会员分享,可在线阅读,更多相关《公务员考试行测数学运算16种题型_精品文档.doc(62页珍藏版)》请在冰豆网上搜索。
数学运算16种题型之利润问题
商店出售商品,总是期望获得利润.例如某商品买入价(成本)是50元,以70元卖出,就获得利润70-50=20(元).通常,利润也可以用百分数来说,20÷50=0.4=40%,我们也可以说获得40%的利润。
因此:
利润的百分数=(卖价-成本)÷成本×100%.
卖价=成本×(1+利润的百分数).
成本=卖价÷(1+利润的百分数).
商品的定价按照期望的利润来确定.
定价=成本×(1+期望利润的百分数).
定价高了,商品可能卖不掉,只能降低利润(甚至亏本),减价出售.减价有时也按定价的百分数来算,这就是打折扣.减价25%,就是按定价的(1-25%)=75%出售,通常就称为75折.因此
卖价=定价×折扣的百分数.
(1+期望利润的百分数)×折扣=(1+利润的百分数)
【例1】某商品按定价的80%(八折或80折)出售,仍能获得20%的利润,定价时期望的利润百分数是()
A:
40%B:
60%C:
72%D:
50%
解析:
设定价是“1”,卖价是定价的80%,就是0.8.因为获得20%的利润,则成本为2/3。
定价的期望利润的百分数是1/3÷2/3=50%
答:
期望利润的百分数是50%.
【例2】某商店进了一批笔记本,按30%的利润定价.当售出这批笔记本的80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是()
A:
12%B:
18%C:
20%D:
17%
解:
设这批笔记本的成本是“1”.因此定价是1×(1+30%)=1.3.其中
80%的卖价是1.3×80%,
20%的卖价是1.3÷2×20%.
因此全部卖价是
1.3×80%+1.3÷2×20%=1.17.
实际获得利润的百分数是
1.17-1=0.17=17%.
答:
这批笔记本商店实际获得利润是17%.
【例3】有一种商品,甲店进货价(成本)比乙店进货价便宜10%.甲店按20%的利润来定价,乙店按15%的利润来定价,甲店的定价比乙店的定价便宜11.2元.问甲店的进货价是()元?
A:
110B:
200C:
144D:
160
解:
设乙店的进货价是“1”,甲店的进货价就是0.9.
乙店的定价是1×(1+15%),甲店的定价就是0.9×(1+20%).
因此乙店的进货价是
11.2÷(1.15-0.9×1.2)=160(元).
甲店的进货价是
160×0.9=144(元).
答:
甲店的进货价是144元.
设乙店进货价是1,比设甲店进货价是1,计算要方便些。
【例4】开明出版社出版的某种书,今年每册书的成本比去年增加10%,但是仍保持原售价,因此每本利润下降了40%,那么今年这种书的成本在售价中所占的百分数是多少?
A:
89%B:
88%C:
72%D:
87.5%
解:
设去年的利润是“1”.
利润下降了40%,转变成去年成本的10%,因此去年成本是40%÷10%=4.
在售价中,去年成本占
因此今年占80%×(1+10%)=88%.
答:
今年书的成本在售价中占88%.
因为是利润的变化,所以设去年利润是1,便于衡量,使计算较简捷.
【例5】一批商品,按期望获得50%的利润来定价.结果只销掉70%的商品.为尽早销掉剩下的商品,商店决定按定价打折扣销售.这样所获得的全部利润,是原来的期望利润的82%,问:
打了()折扣?
A:
6B:
7C:
8D:
9
解:
设商品的成本是“1”.原来希望获得利润0.5.
现在出售70%商品已获得利润
0.5×70%=0.35.
剩下的30%商品将要获得利润
0.5×82%-0.35=0.06.
因此这剩下30%商品的售价是
1×30%+0.06=0.36.
原来定价是1×30%×(1+50%)=0.45.
因此所打的折扣百分数是
0.36÷0.45=80%.
答:
剩下商品打8折出售.
从例1至例5,解题开始都设“1”,这是基本技巧.设什么是“1”,很有讲究.希望读者从中能有所体会.
【例6】某商品按定价出售,每个可以获得45元钱的利润.现在按定价打85折出售8个,所能获得的利润,与按定价每个减价35元出售12个所能获得的利润一样.问这一商品每个定价是()元?
A:
100B:
200C:
300D:
220
解:
按定价每个可以获得利润45元,现每个减价35元出售12个,共可获得利润
(45-35)×12=120(元).
出售8个也能获得同样利润,每个要获得利润
120÷8=15(元).
不打折扣每个可以获得利润45元,打85折每个可以获得利润15元,因此每个商品的定价是
(45-15)÷(1-85%)=200(元).
答:
每个商品的定价是200元.
【例7】张先生向商店订购某一商品,共订购60件,每件定价100元.
张先生对商店经理说:
“如果你肯减价,每件商品每减价1元,我就多订购3件.”商店经理算了一下,如果差价4%,由于张先生多订购,仍可获得原来一样多的总利润.问这种商品的成本是()
A:
66B:
72C:
76D:
82
解:
减价4%,按照定价来说,每件商品售价下降了100×4%=4(元).因此张先生要多订购4×3=12(件).
由于60件每件减价4元,就少获得利润
4×60=240(元).
这要由多订购的12件所获得的利润来弥补,因此多订购的12件,每件要获得利润
240÷12=20(元).
这种商品每件成本是
100-4-20=76(元).
答:
这种商品每件成本76元.
数学运算16种题型之比例问题
比例问题是公务员考试必考题型,也是数学运算中最重要的题型;
解决好比例问题,关键要从两点入手:
第一,“和谁比”;第二,“增加或下降多少”。
【例1】b比a增加了20%,则b是a的多少?
a又是b的多少呢?
【解析】可根据方程的思想列式得a×(1+20%)=b,所以b是a的1.2倍。
A/b=1/1.2=5/6,所以a是b的5/6。
【例2】养鱼塘里养了一批鱼,第一次捕上来200尾,做好标记后放回鱼塘,数日后再捕上100尾,发现有标记的鱼为5尾,问鱼塘里大约有多少尾鱼?
A.200B.4000C.5000D.6000(2004年中央B类真题)
解析:
方程法:
可设鱼塘有X尾鱼,则可列方程,100/5=X/200,解得X=4000,选择B。
【例3】2001年,某公司所销售的计算机台数比上一年度上升了20%,而每台的价格比上一年度下降了20%。
如果2001年该公司的计算机销售额为3000万元,那么2000年的计算机销售额大约是多少?
A.2900万元B.3000万元C.3100万元D.3300万元(2003年中央A类真题)
【解析】方程法:
可设2000年时,销售的计算机台数为X,每台的价格为Y,显然由题意可知,2001年的计算机的销售额=X(1+20%)Y(1-20%),也即3000万=0.96XY,显然XY≈3100。
答案为C。
特殊方法:
对一商品价格而言,如果上涨X后又下降X,求此时的商品价格原价的多少?
或者下降X再上涨X,求此时的商品价格原价的多少?
只要上涨和下降的百分比相同,我们就可运用简化公式,1-X。
但如果上涨或下降的百分比不相同时则不可运用简化公式,需要一步一步来。
对于此题而言,计算机台数比上一年度上升了20%,每台的价格比上一年度下降了20%,因为销售额=销售台数×每台销售价格,所以根据乘法的交换律我们可以看作是销售额上涨了20%又下降了20%,因而2001年是2000年的1-(20%)=0.96,2001年的销售额为3000万,则2000年销售额为3000÷0.96≈3100。
【例4】生产出来的一批衬衫中大号和小号各占一半。
其中25%是白色的,75%是蓝色的。
如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?
A.15B.25C.35D.40(2003年中央A类真题)
【解析】这是一道涉及容斥关系(本书后面会有专题讲解)的比例问题。
根据已知大号白=10件,因为大号共50件,所以,大号蓝=40件;
大号蓝=40件,因为蓝色共75件,所以,小号蓝=35件;
此题可以用另一思路进行解析(多进行这样的思维训练,有助于提升解题能力)
大号白=10件,因为白色共25件,所以,小号白=15件;
小号白=15件,因为小号共50件,所以,小号蓝=35件;
所以,答案为C。
【例5】某企业发奖金是根据利润提成的,利润低于或等于10万元时可提成10%;低于或等于20万元时,高于10万元的部分按7.5%提成;高于20万元时,高于20万元的部分按5%提成。
当利润为40万元时,应发放奖金多少万元?
A.2B.2.75C.3D.4.5(2003年中央A类真题)
【解析】这是一个种需要读懂内容的题型。
根据要求进行列式即可。
奖金应为10×10%+(20-10)×7.5%+(40-20)×5%=2.75
所以,答案为B。
【例6】某校在原有基础(学生700人,教师300人)上扩大规模,现新增加教师75人。
为使学生和教师比例低于2:
1,问学生人数最多能增加百分之几?
A.7%B.8%C.10.3%D.115%(2003年中央A类真题)
【解析】根据题意,新增加教师75人,则学生最多可达到(300+75)×2=750人,学生人数增加的比列则为(750-700)÷700≈7.1%
所以,选择A。
【例7】某企业去年的销售收入为1000万元,成本分生产成本500万元和广告费200万元两个部分。
若年利润必须按P%纳税,年广告费超出年销售收入2%的部分也必须按P%纳税,其它不纳税,且已知该企业去年共纳税120万元,则税率P%为
A.40%B.25%C.12%D.10%(2004年江苏真题)
【解析】选用方程法。
根据题意列式如下:
(1000-500-200)×P%+(200-1000×2%)×P%=120
即480×P%=120
P%=25%
所以,答案为B。
【例8】甲、乙两盒共有棋子108颗,先从甲盒中取出放人乙盒,再从乙盒取出放回甲盒,这时两盒的棋子数相等,问甲盒原有棋子多少颗?
A.40颗B.48颗
C.52颗D.60颗(2004年浙江真题)
『答案』B
【解析】此题可用方程法,设甲盒有X颗,乙盒有Y颗,则列方程组如下,参见辅助资料。
此题运用直接代入法或逆推法更快捷。
【例9】甲乙两名工人8小时共加736个零件,甲加工的速度比乙加工的速度快30%,问乙每小时加工多少个零件?
A.30个B.35个C.40个D.45个(2002年A类真题)
【解析】选用方程法。
设乙每小时加工X个零件,则甲每小时加工1.3X个零件,并可列方程如下:
(1+1.3X)×8=736
X=40
所以,选择C。
【例10】已知甲的12%为13,乙的13%为14,丙的14%为15,丁的15%为16,则甲、乙、丙、丁4个数中最大的数是:
A.甲
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 公务员 试行 数学 运算 16 题型 精品 文档