数字信号处理第三版高西全Word下载.docx
- 文档编号:21040967
- 上传时间:2023-01-27
- 格式:DOCX
- 页数:9
- 大小:21.21KB
数字信号处理第三版高西全Word下载.docx
《数字信号处理第三版高西全Word下载.docx》由会员分享,可在线阅读,更多相关《数字信号处理第三版高西全Word下载.docx(9页珍藏版)》请在冰豆网上搜索。
输入为,输出为故该系统是时不变系统。
故该系统是线性系统。
(3)这是一个延时器,延时器是一个线性时不变系统,下面予以证明。
令输入为,输出为,因为故延时器是一个时不变系统。
又因为故延时器是线性系统。
(5)令:
输入为,输出为,因为故系统是时不变系统。
又因为因此系统是非线性系统。
(7)令:
输入为,输出为,因为故该系统是时变系统。
又因为故系统是线性系统。
6.给定下述系统的差分方程,试判断系统是否是因果稳定系统,并说明理由。
(3);
(5)。
(1)只要,该系统就是因果系统,因为输出只与n时刻的和n时刻以前的输入有关。
如果,则,因此系统是稳定系统。
(3)如果,,因此系统是稳定的。
系统是非因果的,因为输出还和x(n)的将来值有关.(5)系统是因果系统,因为系统的输出不取决于x(n)的未来值。
如果,则,因此系统是稳定的。
7.设线性时不变系统的单位脉冲响应和输入序列如题7图所示,要求画出输出输出的波形。
解法
(1):
采用图解法图解法的过程如题7解图所示。
解法
(2):
采用解析法。
按照题7图写出x(n)和h(n)的表达式:
因为所以将x(n)的表达式代入上式,得到8.设线性时不变系统的单位取样响应和输入分别有以下三种情况,分别求出输出。
(2);
(3)。
(1)先确定求和域,由和确定对于m的非零区间如下:
根据非零区间,将n分成四种情况求解:
①②③④最后结果为y(n)的波形如题8解图
(一)所示。
(2)y(n)的波形如题8解图
(二)所示.(3)y(n)对于m的非零区间为。
①②③最后写成统一表达式:
11.设系统由下面差分方程描述:
;
设系统是因果的,利用递推法求系统的单位取样响应。
令:
归纳起来,结果为12.有一连续信号式中,
(1)求出的周期。
(2)用采样间隔对进行采样,试写出采样信号的表达式。
(3)画出对应的时域离散信号(序列)的波形,并求出的周期。
————第二章————教材第二章习题解答1.设和分别是和的傅里叶变换,试求下面序列的傅里叶变换:
(4)。
(1)令,则
(2)(3)令,则(4)证明:
令k=n-m,则2.已知求的傅里叶反变换。
3.线性时不变系统的频率响应(传输函数)如果单位脉冲响应为实序列,试证明输入的稳态响应为。
假设输入信号,系统单位脉冲相应为h(n),系统输出为上式说明,当输入信号为复指数序列时,输出序列仍是复指数序列,且频率相同,但幅度和相位决定于网络传输函数,利用该性质解此题。
上式中是w的偶函数,相位函数是w的奇函数,4.设将以4为周期进行周期延拓,形成周期序列,画出和的波形,求出的离散傅里叶级数和傅里叶变换。
画出x(n)和的波形如题4解图所示。
以4为周期,或者,以4为周期5.设如图所示的序列的FT用表示,不直接求出,完成下列运算:
(5)解:
(1)
(2)(5)6.试求如下序列的傅里叶变换:
(2);
(3)解:
(2)(3)7.设:
(1)是实偶函数,
(2)是实奇函数,分别分析推导以上两种假设下,的傅里叶变换性质。
令
(1)x(n)是实、偶函数,两边取共轭,得到因此上式说明x(n)是实序列,具有共轭对称性质。
由于x(n)是偶函数,x(n)sinwn是奇函数,那么因此该式说明是实函数,且是w的偶函数。
总结以上x(n)是实、偶函数时,对应的傅里叶变换是实、偶函数。
(2)x(n)是实、奇函数。
上面已推出,由于x(n)是实序列,具有共轭对称性质,即由于x(n)是奇函数,上式中是奇函数,那么因此这说明是纯虚数,且是w的奇函数。
10.若序列是实因果序列,其傅里叶变换的实部如下式:
求序列及其傅里叶变换。
12.设系统的单位取样响应,输入序列为,完成下面各题:
(1)求出系统输出序列;
(2)分别求出、和的傅里叶变换。
(1)
(2)13.已知,式中,以采样频率对进行采样,得到采样信号和时域离散信号,试完成下面各题:
(1)写出的傅里叶变换表示式;
(2)写出和的表达式;
(3)分别求出的傅里叶变换和序列的傅里叶变换。
(1)上式中指数函数的傅里叶变换不存在,引入奇异函数函数,它的傅里叶变换可以表示成:
(2)(3)式中式中上式推导过程中,指数序列的傅里叶变换仍然不存在,只有引入奇异函数函数,才能写出它的傅里叶变换表达式。
14.求以下序列的Z变换及收敛域:
(6)解:
(2)(3)(6)16.已知:
求出对应的各种可能的序列的表达式。
有两个极点,因为收敛域总是以极点为界,因此收敛域有以下三种情况:
三种收敛域对应三种不同的原序列。
(1)当收敛域时,令,因为c内无极点,x(n)=0;
,C内有极点0,但z=0是一个n阶极点,改为求圆外极点留数,圆外极点有,那么
(2)当收敛域时,,C内有极点0.5;
,C内有极点0.5,0,但0是一个n阶极点,改成求c外极点留数,c外极点只有一个,即2,最后得到(3)当收敛域时,,C内有极点0.5,2;
n
或者这样分析,C内有极点0.5,2,0,但0是一个n阶极点,改成求c外极点留数,c外无极点,所以x(n)=0。
最后得到17.已知,分别求:
(1)的Z变换;
(2)的Z变换;
(3)的z变换。
(1)
(2)(3)18.已知,分别求:
(1)收敛域对应的原序列;
(2)收敛域对应的原序列。
(1)当收敛域时,,内有极点0.5,,c内有极点0.5,0,但0是一个n阶极点,改求c外极点留数,c外极点只有2,,最后得到(2(当收敛域时,c内有极点0.5,2,c内有极点0.5,2,0,但极点0是一个n阶极点,改成求c外极点留数,可是c外没有极点,因此,最后得到25.已知网络的输入和单位脉冲响应分别为,试:
(1)用卷积法求网络输出;
(2)用ZT法求网络输出。
(1)用卷积法求,,,,最后得到
(2)用ZT法求令,c内有极点因为系统是因果系统,,,最后得到28.若序列是因果序列,其傅里叶变换的实部如下式:
求序列及其傅里叶变换。
求上式IZT,得到序列的共轭对称序列。
因为是因果序列,必定是双边序列,收敛域取:
。
时,c内有极点,n=0时,c内有极点,0,所以又因为所以3.2教材第三章习题解答1.计算以下诸序列的N点DFT,在变换区间内,序列定义为
(2);
(4);
(6);
(8);
(10)。
(2)(4)(6)(8)解法1直接计算解法2由DFT的共轭对称性求解因为所以即结果与解法1所得结果相同。
此题验证了共轭对称性。
(10)解法1上式直接计算较难,可根据循环移位性质来求解X(k)。
因为所以等式两边进行DFT得到故当时,可直接计算得出X(0)这样,X(k)可写成如下形式:
解法2时,时,所以,即2.已知下列,求
(1);
(2)解:
(1)
(2)3.长度为N=10的两个有限长序列作图表示、和。
、和分别如题3解图(a)、(b)、(c)所示。
14.两个有限长序列和的零值区间为:
对每个序列作20点DFT,即如果试问在哪些点上,为什么?
解:
如前所示,记,而。
长度为27,长度为20。
已推出二者的关系为只有在如上周期延拓序列中无混叠的点上,才满足所以15.用微处理机对实数序列作谱分析,要求谱分辨率,信号最高频率为1kHZ,试确定以下各参数:
(1)最小记录时间;
(2)最大取样间隔;
(3)最少采样点数;
(4)在频带宽度不变的情况下,将频率分辨率提高一倍的N值。
(1)已知
(2)(3)(4)频带宽度不变就意味着采样间隔T不变,应该使记录时间扩大一倍为0.04s实现频率分辨率提高一倍(F变为原来的1/2)18.我们希望利用长度为N=50的FIR滤波器对一段很长的数据序列进行滤波处理,要求采用重叠保留法通过DFT来实现。
所谓重叠保留法,就是对输入序列进行分段(本题设每段长度为M=100个采样点),但相邻两段必须重叠V个点,然后计算各段与的L点(本题取L=128)循环卷积,得到输出序列,m表示第m段计算输出。
最后,从中取出B个,使每段取出的B个采样点连接得到滤波输出。
(1)求V;
(2)求B;
(3)确定取出的B个采样应为中的哪些采样点。
为了便于叙述,规定循环卷积的输出序列的序列标号为0,1,2,…,127。
先以与各段输入的线性卷积考虑,中,第0点到48点(共49个点)不正确,不能作为滤波输出,第49点到第99点(共51个点)为正确的滤波输出序列的一段,即B=51。
所以,为了去除前面49个不正确点,取出51个正确的点连续得到不间断又无多余点的,必须重叠100-51=49个点,即V=49。
下面说明,对128点的循环卷积,上述结果也是正确的。
我们知道因为长度为N+M-1=50+100-1=149所以从n=20到127区域,,当然,第49点到第99点二者亦相等,所以,所取出的第51点为从第49到99点的。
综上所述,总结所得结论V=49,B=51选取中第49~99点作为滤波输出。
5.2教材第五章习题解答1.设系统用下面的差分方程描述:
,试画出系统的直接型、级联型和并联型结构。
将上式进行Z变换
(1)按照系统函数,根据Masson公式,画出直接型结构如题1解图
(一)所示。
(2)将的分母进行因式分解按照上式可以有两种级联型结构:
(a)画出级联型结构如题1解图
(二)(a)所示(b)画出级联型结构如题1解图
(二)(b)所示(3)将进行部分分式展开根据上式画出并联型结构如题1解图(三)所示。
2.设数字滤波器的差分方程为,试画出该滤波器的直接型、级联型和并联型结构。
将差分方程进行Z变换,得到
(1)按照Massion公式直接画出直接型结构如题2解图
(一)所示。
(2)将的分子和分母进行因式分解:
按照上式可以有两种级联型结构:
(a)画出级联型结构如题2解图
(二)(a)所示。
(b)画出级联型结构如题2解图
(二)(b)所示●。
3.设系统的系统函数为,试画出各种可能的级联型结构。
由于系统函数的分子和分母各有两个因式,可以有两种级联型结构。
(1),画出级联型结构如题3解图(a)所示●。
(2),画出级联型结构如题3解图(b)所示。
4.图中画出了四个系统,试用各子系统的单位脉冲响应分别表示各总系统的单位脉冲响应,并求其总系统函数。
图d解:
(d)5.写出图中流图的系统函数及差分方程。
(d)6.写出图中流图的系统函数。
图f解:
(f)8.已知FIR滤波器的单位脉冲响应为,试用频率采样结构实现该滤波器。
设采样点数N=5,要求画出频率采样网络结构,写出滤波器参数的计算公式。
已知频率采样结构的公式为式中,N=5它的频率采样结构如题8解图所示。
6.2教材第六章习题解答1.设计一个巴特沃斯低通滤波器,要求通带截止频率,通带最大衰减,阻带截止频率,阻带最小衰减。
求出滤波器归一化传输函数以及实际的。
(1)求阶数N。
将和值代入N的计算公式得所以取N=5(实际应用中,根据具体要求,也可能取N=4,指标稍微差一点,但阶数低一阶,使系统实现电路得到简化。
)
(2)求归一化系统函数,由阶数N=5直接查表得到5阶巴特沃斯归一化低通滤波器系统函数为或当然,也可以按(6.12)式计算出极点:
按(6.11)式写出表达式代入值并进行分母展开得到与查表相同的结果。
(3)去归一化(即LP-LP频率变换),由归一化系统函数得到实际滤波器系统函数。
由于本题中,即,因此对分母因式形式,则有如上结果中,的值未代入相乘,这样使读者能清楚地看到去归一化后,3dB截止频率对归一化系统函数的改变作用。
2.设计一个切比雪夫低通滤波器,要求通带截止频率,通带最在衰减速,阻带截止频率,阻带最小衰减。
求出归一化传输函数和实际的。
(1)确定滤波器技术指标:
,
(2)求阶数N和:
为了满足指标要求,取N=4。
(2)求归一化系统函数其中,极点由(6.2.38)式求出如下:
(3)将去归一化,求得实际滤波器系统函数其中,因为,所以。
将两对共轭极点对应的因子相乘,得到分母为二阶因子的形式,其系数全为实数。
4.已知模拟滤波器的传输函数为:
式中,a,b为常数,设因果稳定,试采用脉冲响应不变法,分别将其转换成数字滤波器。
该题所给正是模拟滤波器二阶基本节的两种典型形式。
所以,求解该题具有代表性,解该题的过程,就是导出这两种典型形式的的脉冲响应不变法转换公式,设采样周期为T。
(1)的极点为:
,将部分分式展开(用待定系数法):
比较分子各项系数可知:
A、B应满足方程:
解之得所以按照题目要求,上面的表达式就可作为该题的答案。
但在工程实际中,一般用无复数乘法器的二阶基本结构实现。
由于两个极点共轭对称,所以将的两项通分并化简整理,可得用脉冲响应不变法转换成数字滤波器时,直接套用上面的公式即可,且对应结构图中无复数乘法器,便于工程实际中实现。
(2)的极点为:
,将部分分式展开:
通分并化简整理得5.已知模拟滤波器的传输函数为:
(2)试用脉冲响应不变法和双线性变换法分别将其转换为数字滤波器,设T=2s。
(1)用脉冲响应不变法①方法1直接按脉冲响应不变法设计公式,的极点为:
,代入T=2s方法2直接套用4题
(2)所得公式,为了套用公式,先对的分母配方,将化成4题中的标准形式:
为一常数,由于所以对比可知,,套用公式得②或通分合并两项得
(2)用双线性变换法①②7.假设某模拟滤波器是一个低通滤波器,又知,数字滤波器的通带中心位于下面的哪种情况?
并说明原因。
(1)(低通);
(2)(高通);
(3)除0或外的某一频率(带通)。
按题意可写出故即原模拟低通滤波器以为通带中心,由上式可知,时,对应于,故答案为
(2)。
9.设计低通数字滤波器,要求通带内频率低于时,容许幅度误差在1dB之内;
频率在0.3到之间的阻带衰减大于10dB;
试采用巴特沃斯型模拟滤波器进行设计,用脉冲响应不变法进行转换,采样间隔T=1ms。
本题要求用巴特沃斯型模拟滤波器设计,所以,由巴特沃斯滤波器的单调下降特性,数字滤波器指标描述如下:
采用脉冲响应不变法转换,所以,相应模拟低通巴特沃斯滤波器指标为:
(1)求滤波器阶数N及归一化系统函数:
取N=5,查表6.1的模拟滤波器系统函数的归一化低通原型为:
将部分分式展开:
其中,系数为:
(2)去归一化求得相应的模拟滤波器系统函数。
我们希望阻带指标刚好,让通带指标留有富裕量,所以按(6.2.18)式求3dB截止频率。
其中。
(3)用脉冲响应不变法将转换成数字滤波器系统函数:
我们知道,脉冲响应不变法的主要缺点是存在频率混叠失真,设计的滤波器阻带指标变差。
另外,由该题的设计过程可见,当N较大时,部分分式展开求解系数或相当困难,所以实际工作中用得很少,主要采用双线性变换法设计。
第7章习题与上机题解答1.已知FIR滤波器的单位脉冲响应为:
(1)h(n)长度N=6h(0)=h(5)=1.5h
(1)=h(4)=2h
(2)=h(3)=3
(2)h(n)长度N=7h(0)=-h(6)=3h
(1)=-h(5)=-2h
(2)=-h(4)=1h(3)=0试分别说明它们的幅度特性和相位特性各有什么特点。
(1)由所给h(n)的取值可知,h(n)满足h(n)=h(N-1-n),所以FIR滤波器具有A类线性相位特性:
由于N=6为偶数(情况2),所以幅度特性关于ω=π点奇对称。
(2)由题中h(n)值可知,h(n)满足h(n)=-h(N-1-n),所以FIR滤波器具有B类线性相位特性:
由于7为奇数(情况3),所以幅度特性关于ω=0,π,2π三点奇对称。
2.已知第一类线性相位FIR滤波器的单位脉冲响应长度为16,其16个频域幅度采样值中的前9个为:
Hg(0)=12,Hg
(1)=8.34,Hg
(2)=3.79,Hg(3)~Hg(8)=0根据第一类线性相位FIR滤波器幅度特性Hg(ω)的特点,求其余7个频域幅度采样值。
因为N=16是偶数(情况2),所以FIR滤波器幅度特性Hg(ω)关于ω=π点奇对称,即Hg(2π-ω)=-Hg(ω)。
其N点采样关于k=N/2点奇对称,即Hg(N-k)=-Hg(k)k=1,2,…,15综上所述,可知其余7个频域幅度采样值:
Hg(15)=-Hg
(1)=-8.34,Hg(14)=-Hg
(2)=-3.79,Hg(13)~Hg(9)=03.设FIR滤波器的系统函数为求出该滤波器的单位脉冲响应h(n),判断是否具有线性相位,求出其幅度特性函数和相位特性函数。
解:
对FIR数字滤波器,其系统函数为所以其单位脉冲响应为由h(n)的取值可知h(n)满足:
h(n)=h(N-1-n)N=5所以,该FIR滤波器具有第一类线性相位特性。
频率响应函数H(ejω)为幅度特性函数为相位特性函数为4.用矩形窗设计线性相位低通FIR滤波器,要求过渡带宽度不超过π/8rad。
希望逼近的理想低通滤波器频率响应函数Hd(ejω)为
(1)求出理想低通滤波器的单位脉冲响应hd(n);
(2)求出加矩形窗设计的低通FIR滤波器的单位脉冲响应h(n)表达式,确定α与N之间的关系;
(3)简述N取奇数或偶数对滤波特性的影响。
(1)
(2)为了满足线性相位条件,要求,N为矩形窗函数长度。
因为要求过渡带宽度Δβ≤rad,所以要求
加矩形窗函数,得到h(n):
(3)N取奇数时,幅度特性函数Hg(ω)关于ω=0,π,2π三点偶对称,可实现各类幅频特性;
N取偶数时,Hg(ω)关于ω=π奇对称,即Hg(π)=0,所以不能实现高通、带阻和点阻滤波特性。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号 处理 第三 版高西全