基于层次分析法的灰色关联度综合评价模型文档格式.docx
- 文档编号:21040333
- 上传时间:2023-01-27
- 格式:DOCX
- 页数:25
- 大小:146.15KB
基于层次分析法的灰色关联度综合评价模型文档格式.docx
《基于层次分析法的灰色关联度综合评价模型文档格式.docx》由会员分享,可在线阅读,更多相关《基于层次分析法的灰色关联度综合评价模型文档格式.docx(25页珍藏版)》请在冰豆网上搜索。
二级指标灰色关联度评价矩阵以及二级指标权重向量,得出一级指标灰色关联度评价矩阵,结合一级指标权重向量,最终获得一级指标评价向量。
7.确定综合评价结果
根据一级指标评价向量,可知系统对于五个等级的不同关联度情况,亦可根据不同评价等级标准值向量,获得灵活型公共交通系统综合评价结果。
1.2评价指标的无量纲化
综合评价模型具有呈多层次结构分布的指标体系,指标数量较多,特点各不相同,各评价指标没有统一的计量标准,评价值具有不同的单位,并处于不同的计量范围当中,不具
有任何可比性。
为了消除各评价指标之间的量纲效应,确定评价指标的灰色关联度评价矩阵,
需要将各评价指标进行无量纲化处理,使各个评价值转化为0~1之间的具体数值,从而使建
模具有通用性。
一般情况下,评价指标分为越小越优型(例如成本、污染等负面影响因子)和越大越优型(例如效益、安全性等正面影响因子)两种类型,如果用Ui(i=1,2)分别表示这两种类
型的评价指标集合,那么对于U中的n个所有指标来说,可以知道:
2
U=嘉UUh一U2=门公式1-1
i=1
对于评价指标集合Ui€U,定义它的评价值的取值范围,即论域,为di=[mi,Mi],其中
mi表示该评价指标集合中评价指标的最小值,Mi表示该评价指标集合中评价指标的最大值,
下面定义:
Ui€[0,1],Udi(X)表示该评价指标集的评价指标值Xj在论域[mi,Mi]上经过量化后的
隶属度函数,表示了决策者对于评价指标值Xi的满意程度,下面分别给出两种类型的评价指
标隶属度函数,第一种情况是指标越小越优,第二种情况是指标越大越优:
1.指标越小越优型无量纲化隶属度函数(Xi€Ui)
IXj兰mi
斤=Udi(Xi—Xj)/(Mj—mi),X¥
di公式1-3
0,X^Mi
2.指标越大越优型无量纲化隶属度函数(Xi€U2)
1,Xi_Mi
I
r二UdiXi二Xi—mi/Mi—mi,X「di公式1-4
Xi兰mi
1.3确定综合评价等级
根据一定的标准和尺度,确定综合评价等级Z=(Z1,Z2,Z3,Z4,Z5)=(优秀,良好,一般,较差,差)=(一级,二级,三级,四级,五级),从而能够对无量纲化的单个指标值进行等级划分,具体等级量化如表1-1所示。
表1-1评价指标等级量化
标准
优秀
良好
一般
较差
差
一级
二级
三级
四级
五级
评分
[0.8,1]
[0.6,0.8)
[0.4,0.6)
[0.2,0.4)
[0,0.2)
1.4确定指标权重
权重是在综合评价体系当中,根据指标对评价目标贡献程度的不同,按照其重要程度
做出的定量数值分配,它由评价因素本身价值、评价人员个人感知、决策者评价目标等多方面因素共同决定,指标的权重代表了在整个评价体系当中该指标的相对重要程度。
评价指标
权重的确定方法,包括最小二乘法、熵值法、本征向量法、一般加权和法、最小二乘法、专家咨询法、层次分析法等,本文选用层次分析法确定指标权重。
1.4.1构造判断矩阵
层次分析法将同层次之间各评价指标的重要程度进行两两相互比较和判断,通过引入
合适的数值表示判断结果,这些数值构成判断矩阵B=[bij]m*m,其中i,j€(1,2,…,m),m为
该层指标数量。
bnb2川bm〕
|b21b21川b2m
■fill
■faIdh
1■F
bm^IIIbmmj
bj代表了指标i相对于指标j的重要性,具有以下几个性质:
1.bj>
o
2.bj=1/bji(i工j)
3.bii=1
B矩阵,也称为正反矩阵,B矩阵的构造,可以使权重决策判断定量化,通常情况下采用1-9标度法,从层次结构模型的第二层开始,将每一层各指标对于上一层元素的相对重要
性进行量化,用成对比较法构造对比矩阵,直至最下面一层,构造出每一个层次的所有判断
矩阵,判断矩阵指标相对重要性标度如表1-2所示。
表1-2指标相对重要性标度
相对重要性标度
含义
bij=1
指标i和指标j具有相冋的重要性
bij=3
指标i比指标j略重要一些
bij=5
指标i比指标j重要
bij=7
指标i比指标j重要很多
bij=9
指标i比指标j极其重要
bij=2n,n=1,2,3,4
指标i比指标j的重要性介于bij=2n-1与bij=2n+1之间
1.4.2判断矩阵的一致性检验及权重的计算
利用和积法对判断矩阵的每一列进行归一化处理,得到矩阵
n
B二bj二bj/二bij
◎
j=1,2,…,n
公式
1-5
将矩阵
按行相加,得到矩阵
W八石
j吕
i=1,2,…,n
1-6
进行归一化处理,得到各指标的权重向量矩阵
W
W訥/'
W
iT
1-7
进而计算判断矩阵B的最大特征根入max
1n(Bw\
■maxI(BW)i为向量BW的第i个公式1-8
ni#wi
一致性检验指标CI
Cl公式1-9
nT
鉴于随机原因也有可能造成一致性偏差,因此应进一步找出对应于n的平均一致性指
标RI,它只与矩阵阶数n有关,矩阵阶数越大,就会出现越大的随机一致性偏离的可能性,平均随机一致性指标如表1-3所示。
表1-3平均随机一致性指标表
阶数
3
4
5
6
7
8
9
10
11
RI
0.58
0.90
1.12
1.24
1.32
1.41
1.45
1.49
1.52
从而得到一致性比例CR
CR=CI/RI公式1-10
对于一、二阶矩阵,RI为0,可以不用进行检验。
当n>
3时,若CR<
0.1时,我们认为
判定矩阵B具有一致性,或者它的不一致程度是可以接受的。
反之,当CR>
0.1时,则判断
矩阵的一致性是不可以接受的,应该对判断矩阵B进行适当修正,然后重新计算新判断矩阵
的一致性,直到判断矩阵具有一致性位置。
1.5建立二级指标评价矩阵
根据规定的指标评价等级,对无量纲化的二级指标值进行单独评价,设一共有n个二
级指标集,每一个二级指标集有m个评价指标,其中i=1,2,…,n,j=1,2,…,m,从而建立二级指标评价矩阵,如下所示。
1.6建立灰色关联度评价矩阵
根据灰色关联度理论,二级指标ej为参考指标,由无量纲化隶属度函数以及向量评语
集可知,无量纲化指标评价值越趋近于1,则表示评价结果越好,因此令相对最优比较指标
为eo=(eo1,eo2,eo3,…,eom)=(1,1,1,…,1),其中m为该评价指标集合中评价指标的个数,根据灰色关联度的定义,二级评价指标ej与相对最优比较指标eo在各点的灰色关联度系数如
下所示。
min1兰兰min1至玄
eij—Qj
+Pmax
1<逝
max§
空
eijeoj|
eij-eoj
1+Pmax生虫maxg命
eij_eoj
reij,eoj二
式1-12
r(eij,e°
j)为与e°
j在第j个指标处的关联系数,eij-eoj表示与e°
j在j点的
绝对值,min恒童min恒直eij-eoj为它们之间的最小二级差,
max<
:
<
max至色兔-eoj为它们之间的最大二级差。
为分辨系数,其作用为削弱由于
最小二级差数值过大而带来的失真,从而提高各关联度系数之间差异的明显性,一般取值为
0~1,具体取值可视情况而定。
当>
0.5时,各关联度系数之间的差异比较小,当V0.5时,
各关联度系数之间的差异比较大,当<
0.5436时,分辨力最好,通常取=0.5,又
e0=(e01,e02,e°
3,…,e°
m)=(1,1,1,…,1),则二级指标各点的灰色关联度为:
1.7确定一级指标评价向量
以二级指标权重向量与二级指标灰色关联度评价矩阵的乘积,作为一级指标灰色关联度评价矩阵,通过一级指标权重向量与一级指标灰色关联度评价矩阵相乘,得到一级指标评
价向量,可知:
一级指标灰色关联度评价矩阵为
-
ri11
ri12
III
ri15
f
cn
C12
C151
C=W*R=(W1,W2,川,Wm)
ri21
■r
ri22
*
q
ri25
F
=
C21
C22
1
C25
H
■
rim1
rim2
rim5_
1i
ci1
Ci2
Ci5j
其中
i为二级评价指标集的个数
1-15
一级指标评价向量为
公式1-16
1.8确定综合评价结果
为便于评价,将做归一化处理,即
Z=丿
z
Z2
Z3乙
Z5
公式1-17
5,
ZZq
q丄
5,5
EZq£
Z
q_1q_1
'
q》Zqqj
选取
Zq
对应的等级作为综合评价结果,
般情况下,按照隶丿禺度最人原则,
max5
迟Zq
q二
也可取各种评价等级值向量D=(0.9,0.7,0.5,0.3,0.1)T,Z=B*D作为最后的综合评价值。
1.9本章小结
本章通过研究分析,引入了基于层次分析法的灰色关联度模型,在评价指标体系确定和量化的基础上,对评价指标进行无量纲化处理,之后通过层次分析法确定指标权重,进而
建立指标评价矩阵及灰色关联度评价矩阵,最终根据权重向量和评价矩阵,参考评价等级建
议值,确定综合评价结果。
第2章案例分析
灵活型公共交通系统在欧洲、北美等国外地区已经比较普遍,但由于我国城市扩张严重、人口密度过大,加之公交行业的相关政策以及管理体制的限制,使得目前我国还没有真正意义上的灵活型公共交通系统,不能为案例分析提供实际运营数据。
济南市作为山东省省会,在社会发展、经济发展、城市发展三个方面,均符合灵活型公共交通系统发展的要求,灵活型公共交通系统的推行也符合济南市城市交通现状、发展趋势和城市发展方向,因此考虑以济南市为背景,进行灵活型公共交通系统的模拟、评价和分析。
本文借鉴国内相关灵活型公共交通系统适应性分析研究成果【3】,选取济南市131路公交线路进行灵活型公共交通方式的模拟,进而应用基于层次分析法的灰色关联度评价模型,对模拟结果进行综合分析和评价,从而验证模型的有效性和可行性。
2.1模拟案例概述
2.1.1案例模拟背景
济南市作为山东省省会城市,在社会发展、经济发展、城市发展三个方面,均符合灵活型公共交通系统的发展要求。
首先,随着城市化、机动化进程的不断加快,2013年济南市国民生产总值已经达到5230亿元,人民生活水平日益增高,对出行方式的灵活型、舒适性、方便性等方面的要求也越来越高,灵活型公共交通能够满足出行者各方面要求;
第二,济南市政府出台的《关于优先发展城市公共交通的意见》,确立了优先发展公共交通的战略方向,减少环境污染、促进城市与交通和谐发展成为政府的工作重点,灵活型公共交通系统是减少能源消耗、减轻环境污染的良好出行选择;
第三,济南市老龄化严重,到2015年底,老年人口比例将达到20%,预计2020年,济南市将步入人口快速老龄化阶段,为老年人等特殊群体提供方便的公共交通出行服务,是社会福利事业的建设重点,灵活型公共交通系统能很好的满足这一需求。
鉴于此,选取济南市为背景,进行灵活型公共交通系统的模拟、综合评价和分析。
参考国内相关灵活型公共交通系统适应性分析研究成果,根据济南市城市具
体发展情况,对济南市131路公交线路进行可偏移路线型运营模式(MobilityAllowance
ShuttleTransit,MAST)模拟,MAST是灵活型公共交通系统运营模式的一种,主要在固定线路上运行,根据乘客预约情况,适当偏离主线路为乘客提供服务【3】。
济南市131路公交线路,全长共6.8公里,单方向共14站,平均站间距为0.52千米,每周运营七天,每天运营时间段为早6:
00至晚21:
00,发车间隔见表2-1。
该线路自2007年初投入运营,为出行者提供较偏远地区“转山西路及旅游路沿线”至大型换乘点“燕山立交桥”之间的短距离公交运输服务,是典型的连接城市外围居民区与城市主要公交换乘点的支线公交线路。
对131路公交线路长度、沿线土地功能、人口分布情况进行考察,认为其符合开展灵活型公共交通的要求【3】。
公交131路线路走向及沿线用地功能分配如图2-1所示。
表2-1公交131路发车间隔
时间段
发车间隔(min)
6:
00-7:
00
5〜7
7:
00-8:
30
3〜4
8:
30-10:
10〜12
10:
30-16:
13〜15
16:
00-18:
18:
00-21:
图2-1公交131路线路走向及沿线功能区分布
2.1.2案例模拟
根据相关灵活型公共交通系统适应性评价研究【3】,对131路常规型公交线路进行可偏
移路线型运营模式的模拟。
根据沿线土地功能,确定预约站点的位置,结合各站点上下客人
数,通过固定站点判断公式,对灵活型公共交通系统固定站点进行选择,最终取1、2、3、
5、6、7、9、11、14为系统的固定站点,取15、16、17、18、19为系统的预约站点,灵活型公共交通系统固定站点及预约站点如图2-2所示。
图2-2公交131路灵活型公交固定站点及预约站点
现选取由19号站点到1号站点运行的上行线路作为模拟案例进行分析。
1号终点站为
燕山立交桥换乘枢纽,根据131路现状上下客调查,假设模拟案例乘客均在2~19号站点上
车,在1号站点下车。
根据相关灵活型公共交通系统适应性评价研究,基于系统适应性综合
评价模型131,认为在平峰时期,131路公交线路通过乘客预约情况,合理调度车辆,减少发车频率,将票价定为3元,并且政府补贴系数为0.8时,灵活型公交运营模式与常规型公交运营模式经济效益相平衡,该灵活型公交系统能够良好运营。
现状平峰时期车辆满载率的调
查显示,满载率水平较低,现用8m长公交车造成了资源浪费,考虑平峰时期采用灵活型公
共交通模式换为8座小车。
2.1.3指标数据收集
根据131路公交线路模拟灵活公交运营情况,结合济南市公共交通现状,统计并收集各评价指标值。
1.A1响应时间
目前131路公交线路发车频率为平峰时期一小时发车4~5趟,考虑转换为灵活型公交
运营后,合理减少发车频率,加之调度中心需要一定的调度时间,假设131路灵活型公共交
通系统响应时间为1小时。
2.A2服务跨度
目前131路公交线路营运时间为6:
00~21:
00,服务跨度为15个小时,转换为灵活型公交运营后,服务跨度不变。
3.A3服务拒绝或服务遗漏
根据平峰时期131路现状各站点上下客人数,可以知道平峰时期131路出行人数较少,加之服务频率较高,转换成灵活型公交运营后我们假设不存在服务拒绝或遗漏。
4.A4预约方便度
预约方便度跟预约方式有很大关系,包括电话预约、网络预约等,鉴于131路灵活公
交营运处于初级阶段,假设其采用最简单的人工电话预约方式,需要对出行时间、出行地点
等信息进行确认,预约时间大约在2~3分钟.
5.A5准时性
假设131路灵活型公交准点时间范围为10分钟,与常规公交准点时间范围相似,例如
预约时间为10点,则车辆在9:
55~10:
05之间到达指定站点都称之为准时。
鉴于灵活型公交准时性与常规型公交准时性均主要受道路交通环境的影响,济南市常规公交汽电车准点率
约为78.5%,基于此假设131路灵活型公交准时性也为78.5%。
6.A6出行时间差
131路灵活型公交共有5个预约站点,预约站点上车乘客均在1号站点下车,根据公
式2-1对每个预约站点的出行时间差进行加权平均,得到出行时间差为13.6min,其中灵活
型公交车速按照济南市常规公交平峰车速18.5km/h,小汽车车速为济南市平峰时期小汽车
平均车速30km/h。
7.A7安全行驶间隔里程
131路灵活型公交是由常规公交131路转化而成,灵活型公共交通系统安全行驶间隔
里程可以按济南市常规公交安全行驶间隔里程计算,约为251万公里。
8.A8车辆安全系数
根据131路公交车现状,可知,车辆安全系数评价的七个方面,131路灵活型公交系
统可达到六项,其中车内并无安全带。
9.A9经济性
131路灵活型公交票价定位3元,常规型131路票价为1元,济南市出租车起步价为8元,根据131路灵活型公交五个预约站点至1号燕山立交桥站点距离的加权平均值,可知出租车费用为11元,则131路灵活型公交费用为大于常规公交费用,占出租车费用的27%
10.A10满载率
根据现状平峰时期满载率情况,对于131路灵活型公交的8座小车,131路灵活型公
交满载率较高,为75%。
11.A11车内环境
对车内环境的六个方面进行分别评价,认为131路灵活型公交车内环境全部满足。
12.A12公交企业收益比例
根据模拟的情况,131路灵活型公交在车票价格为3元时,政府补贴系数为0.8,方能达到与常规型公共运营效益相平衡,因此灵活型公交运营占常规型公交运营收益的80%,公
交企业收益比例为80%。
13.A13车辆完好率
济南市常规公交车辆完好率统计为98.65%,认为131路灵活型公交车辆完好率与常规
公交车辆完好率相同。
14.A14环境污染指数
根据131路灵活型公交车辆污染物排放情况,对比国家相关标准,根据公式2-2得出
131路灵活型公交环境污染指数约为0.50。
常规8座小型客车各污染物
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 层次 分析 灰色 关联 综合 评价 模型
