《113多边形及其内角和》同步练习含答案解析Word文件下载.docx
- 文档编号:20914597
- 上传时间:2023-01-26
- 格式:DOCX
- 页数:12
- 大小:40.12KB
《113多边形及其内角和》同步练习含答案解析Word文件下载.docx
《《113多边形及其内角和》同步练习含答案解析Word文件下载.docx》由会员分享,可在线阅读,更多相关《《113多边形及其内角和》同步练习含答案解析Word文件下载.docx(12页珍藏版)》请在冰豆网上搜索。
A.六边形B.七边形C.八边形D.九边形
8.一个凸多边形除一个内角外,其余各内角的和为2570°
,则那个内角的度数等于( )
A.90°
B.105°
C.130°
D.120°
二、中考题与竞赛题
9.若一个多边形的内角和等于1080°
,则那个多边形的边数是( )
A.9B.8C.7D.6
三、填空题:
10.多边形的内角中,最多有 个直角.
11.从n边形的一个顶点动身能够引 条对角线,这些对角线将那个多边形分成 个三角形.
12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°
,那么那个多边形的边数最少为 .
13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:
2,则那个多边形的边数为 .
14.每一个内角差不多上144°
的多边形有 条边.
四、基础训练:
15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?
16.一个多边形的每一个外角都等于24°
,求那个多边形的边数.
五、提升训练
17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:
n,其中m,n是互质的正整数,求那个多边形的边数(用m,n表示)及n的值.
六、探究发觉
18.从n边形的一个顶点动身,最多能够引多少条对角线?
请你总结一下n边形共有多少条对角线.
《11.3多边形及其内角和》
参考答案与试题解析
【考点】多边形内角与外角.
【专题】运算题.
【分析】按照n边形的外角和为360°
得到外角为钝角的个数最多为3个.
【解答】解:
∵一个多边形的外角和为360°
,
∴外角为钝角的个数最多为3个.
故选D.
【点评】本题考查了多边形的外角和:
n边形的外角和为360°
.
【分析】按照n边形的内角和(n﹣2)•180°
分不建立方程,求出n,由于n≥3的整数即可得到D选项正确.
A、(n﹣2)•180°
=120•n,解得n=6,因此A选项错误;
B、(n﹣2)•180°
=(128
•n,解得n=7,因此B选项错误;
C、(n﹣2)•180°
=144°
•n,解得n=10,因此C选项错误;
D、(n﹣2)•180°
=145°
•n,解得n=
,不为整数,因此D选项正确.
【点评】本题考查了多边形的内角和定理:
n边形的内角和为(n﹣2)•180°
【分析】多边形的外角和是360°
,且按照多边形的各内角都相等则各个外角一定也相等,按照选项中的比例关系求出外角的度数,按照多边形的外角和定理求出边数,如果是≥3的正整数即可.
A、外角是:
180×
=60°
,360÷
60=6,故可能;
B、外角是:
=90°
90=4,故可能;
C、外角是:
=
度,360÷
=7,故可能;
D、外角是:
=80°
.360÷
80=4.5,故不能构成.
【点评】本题要紧考查了多边形的外角和定理,明白得外角与内角的关系是解题的关键.
【分析】利用多边形的外角和是360度即可求出答案.
因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,
多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.
故选A.
【点评】本题考查了多边形的内角咨询题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的咨询题能够转化为外角的咨询题进行考虑.
【分析】由四边形的内角和等于360°
,又由有一组对角差不多上直角,即可得另一组对角一定互补.
如图:
∵四边形ABCD的内角和等于360°
即∠A+∠B+∠C+∠D=360°
∵∠A=∠C=90°
∴∠B+∠D=180°
∴另一组对角一定互补.
【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意把握四边形的内角和等于360°
【考点】多边形的对角线.
【分析】按照多边形的对角线的定义可知,从n边形的一个顶点动身,能够引(n﹣3)条对角线,由此可得到答案.
设那个多边形是n边形.
依题意,得n﹣3=10,
∴n=13.
故那个多边形是13边形.
故选:
A.
【点评】多边形有n条边,则通过多边形的一个顶点所有的对角线有(n﹣3)条,通过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.
【分析】按照多边形对角线公式,可得答案.
设多边形为n边形,由题意,得
=14,
解得n=7,
B.
【点评】本题考查了多边形的对角线,熟记公式并灵活运用是解题关键.
【分析】可设这是一个n边形,那个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°
,按照多边形内角x的范畴,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决咨询题.
【解答】解;
设这是一个n边形,那个内角的度数为x度.
因为(n﹣2)180°
=2570°
+x,
因此x=(n﹣2)180°
﹣2570°
=180°
n﹣2930°
∵0<x<180°
,∴0<180°
<180°
解得:
16.2<n<17.2,又n为正整数,
∴n=17,
因此多边形的内角和为(17﹣2)×
180°
=2700°
即那个内角的度数是2700°
=130°
故本题选C.
【点评】本题需利用多边形的内角和公式来解决咨询题.
【分析】多边形的内角和能够表示成(n﹣2)•180°
,依此列方程可求解.
设所求正n边形边数为n,
则1080°
=(n﹣2)•180°
解得n=8.
【点评】本题考查按照多边形的内角和运算公式求多边形的边数,解答时要会按照公式进行正确运算、变形和数据处理.
10.多边形的内角中,最多有 4 个直角.
【分析】由多边形的外角和为360°
可求得答案.
当内角和90°
时,它相邻的外角也为90°
∵任意多边形的外角和为360°
∴360°
÷
90°
=4.
故答案为:
4.
【点评】本题要紧考查的是多边形的内角与外角,明确任意多边形的外角和为360°
是解题的关键.
11.从n边形的一个顶点动身能够引 n﹣3 条对角线,这些对角线将那个多边形分成 n﹣2 个三角形.
【分析】按照n边形对角线的定义,可得n边形的对角线,按照对角线的条数,可得对角线分成三角形的个数.
【解答】解从n边形的一个顶点动身能够引n﹣3条对角线,这些对角线将那个多边形分成n﹣2个三角形,
n﹣3,n﹣2.
【点评】本题考查了多边形的对角线,由对角线的定义,可画出具体多边形对角线,得出n边形的对角线.
,那么那个多边形的边数最少为 9 .
【分析】按照多边形的外角和定理,列出不等式即可求解.
因为n边形的外角和是360度,每一个内角都大于135°
即每个外角小于45度,
就得到不等式:
,解得n>8.
因而那个多边形的边数最少为9.
【点评】本题已知一个不等关系就能够利用不等式来解决.
2,则那个多边形的边数为 11 .
【分析】先按照多边形的内角和外角的关系,求出一个外角.再按照外角和是固定的360°
,从而可代入公式求解.
设多边形的一个内角为9x度,则一个外角为2x度,依题意得
9x+2x=180°
解得x=(
360°
[2×
(
]=11.
答:
那个多边形的边数为11.
【点评】本题考查多边形的内角与外角关系、方程的思想.关键是记住多边形的一个内角与外角互补、及外角和的特点.
的多边形有 10 条边.
,因为所给多边形的每个内角均相等,故又可表示成120°
n,列方程可求解.此题还能够由已知条件,求出那个多边形的外角,再利用多边形的外角和定理求解.
解法一:
设所求n边形边数为n,
则144°
n=(n﹣2)•180°
解得n=10;
解法二:
∵n边形的每个内角都等于144°
∴n边形的每个外角都等于180°
﹣144°
=36°
又因为多边形的外角和为360°
即36°
•n=360°
∴n=10.
【考点】规律型:
图形的变化类.
【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.
n=1时,有1个三角形,需要火柴的根数为:
3×
1;
n=2时,有5个三角形,需要火柴的根数为:
(1+2);
n=3时,需要火柴的根数为:
(1+2+3);
…;
n=20时,需要火柴的根数为:
(1+2+3+4+…+20)=630.
【点评】此题考查的知识点是图形数字的变化类咨询题,本题的关键是弄清到底有几个小三角形.
【分析】按照多边形外角和为360°
及多边形的每一个外角都等于24°
,求出多边形的边数即可.
设那个多边形的边数为n,
则按照多边形外角和为360°
,可得出:
24×
n=360,
n=15.
因此那个多边形的边数为15.
【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练把握多边形外角和为360°
【分析】设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度得到m:
n=180(a﹣2):
360,从而用m、n表示出a的值.
设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度,
m:
360
a=
因为m,n是互质的正整数,a为整数,
因此n=2,
,2.
【点评】本题考查了多边形的内角与外角,解答本题的关键在于熟练把握多边形内角和与多边形外角和.
【分析】从n边形的一个顶点动身,最多能够引n﹣3条对角线,然后即可运算出结果.
过n边形的一个顶点可引出n﹣3条对角线;
n边形共有
条对角线.
【点评】本题要紧考查的是多边形的对角线,把握多边形的对角线公式是解题的关键.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 113多边形及其内角和 113 多边形 及其 内角 同步 练习 答案 解析