废电池的危害综述Word文档下载推荐.docx
- 文档编号:20898167
- 上传时间:2023-01-26
- 格式:DOCX
- 页数:8
- 大小:25.10KB
废电池的危害综述Word文档下载推荐.docx
《废电池的危害综述Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《废电池的危害综述Word文档下载推荐.docx(8页珍藏版)》请在冰豆网上搜索。
带着疑问,课题组作了全面深入的调查,得出的结论与一些新闻报道相去甚远,这些报道确有不切合实际和偏激之处。
聂教授介绍说,电池产品可分一次干电池(普通干电池)、二次干电池(可充电电池,主要用于移动电话、计算机)、铅酸蓄电池(主要用于汽车)三大类。
用量最大、群众最关心,报道最多的是普通干电池。
下面所说的电池均指普通干电池。
电池主要含铁、锌、锰等重金属元素,此外还含有微量的汞,汞是有毒的物质。
有报道笼统地说,电池含有汞、镉、铅、砷等物质,这是不准确的。
事实上,群众日常使用的普通干电池生产过程中不需添加镉、铅、砷等物质。
资料显示,3000吨可以回收杂锌锭141吨、冶金二氧化锰300吨、铁皮260吨、电解锌181吨、电解二氧化锰340吨、铁皮500吨,价值相当于国家开发两个中型矿山的费用,更何况这些都是不可再生的一次性资源。
废旧电池的危害
折叠汞危害
汞的挥发温度低,是一种毒性较大的重金属。
很多地方的土壤中也含有微量的汞,在汞矿开采、提炼、含汞产品加工过程中,如密闭措施不够完备,释放到空气中的汞(蒸气)对操作人员的健康影响很大。
废电池中的汞溢出后,如果进入人的脑细胞,人的神经系统会受到严重破坏。
镉会让人的肝和肾受损,重者骨骼变形。
电池中虽然含有汞,但由于是添加剂,其含量很少。
即便是高汞电池,含汞量一般也在电池重量的千分之一以内。
中国电池行业全年的用汞量,大体上与一个汞法聚氯乙烯,或汞法炼金,或高汞铅锌矿采选的企业年排放废水中的含汞量相当。
由于电池消费区域大,含汞废电池进入生活垃圾处理系统以后,对环境的影响比前述一个化工企业排放含汞废水所造成的影响要小得多,况且电池使用了不锈钢或碳钢做外包皮,有效地防止了汞的外漏。
因而废电池分散丢弃在生活垃圾中,其危害微乎其微,在客观上不可能造成水俣病之类的危害。
日本的水俣病是化工企业几十年向一条河流排放大量含汞废水,下游水系中汞逐渐累积造成的。
折叠酸和重金属铅
有些废电池中还含有酸和重金属铅,如果泄漏到自然界可引起土壤和水源污染,最终对人造成危害。
相关政策
国内政策
1997年底,中国轻工总会、国家经贸委等9部门联合发出《关于限制电池汞含量的规定》,借鉴发达国家的经验,要求国内电池制造企业逐步降低电池汞含量,2002年国内销售的电池要达到低汞水平,2006年达到无汞水平。
但据消费者反映,市场上有些假冒伪劣电池汞含量可能达不到低汞标准。
至于市场上假冒伪劣电池的销售总量有多少,无法估计。
国外政策
国外一些发达国家在回收处理废电池方面已经进行了一系列积极的探索,并积累了不少好的经验。
美国、日本、欧盟等地区未把群众日常生活使用的普通干电池作为危险废物对待,也没有强制单独收集处理普通干电池的法律。
少数发达国家的电池(子)工业协会、个别城市曾经组织过普通干电池收集活动,2015年开展这类活动的地方已经很少了。
日本、瑞士各有1个废电池再利用工厂,原来主要处理含汞普通废电池,现在则主要处理可充电电池。
由于废电池总量较小,设施的生产能力有一部分闲置。
德国把收集上来的废电池放置在废弃的矿坑中。
管理政策
在电池管理政策上,发达国家的政策可以概括为两类。
第一类:
针对普通干电池
政府要求制造商逐步降低电池中的汞含量,最终禁止向电池中添加汞。
这项要求是淘汰所有含汞产品、工艺(如以汞为触媒)的一部分,而不仅仅针对电池行业。
现在,几乎所有的发达国家都禁止向电池中添加汞。
对于报废的普通干电池,没有强制单独收集处理。
如果某个城市或企业自愿单独收集处理(或利用),国家既不鼓励也不限制。
第二类:
针对可充电电池的
通过立法要求制造商逐步淘汰含镉电池。
目前,镍氢电池、锂电池正在逐步取代镍镉电池。
一些国家的电子制造商协会开展了可充电电池回收利用工作,效果也比较显著。
这主要是因为可充电电池总消耗量相对较少(与普通干电池相比);
应用范围较小,容易通过以旧换新的方式收集;
回收价值较高。
这类废电池收集是比较容易的。
德国废电池回收管理新规定
据环保专家介绍,为加强对废电池的回收管理,德国实施了废电池回收管理新规定。
规定要求消费者将使用完的干电池、钮扣电池等各种类型的电池送交商店或废品回收站回收,商店和废品回收站必须无条件接受废电池,并转送处理厂家进行回收处理。
同时,他们还对有毒性的镍镉电池和含汞电池实行押金制度,即消费者购买每节电池中含有一定的押金,当消费者拿着废旧电池来换时,价格中可以自动扣除押金。
瑞士的废电池处理工厂
在废电池的处理方面,瑞士有两家专门加工利用旧电池的工厂,其中一家工厂采取的方法是将旧电池磨碎,然后送往炉内加热,这时可提取挥发出的汞,温度更高时锌也蒸发,锰和铁熔合后成为炼钢所需的锰铁合金。
这家工厂一年可加工2000吨废电池,可获得780吨锰铁合金、400吨锌和3吨汞。
另一家工厂则是直接从电池中提取铁元素,并将氧化锰、氧化锌、氧化铜和氧化镍等金属混合物作为金属废料直接出售。
德国的马格德堡近郊区兴建了一个"
湿处理"
装置,在这里除铅酸蓄电池外,各类电池均溶解于硫酸,然后借助离子树脂从溶液中提取各种金属物,用这种方法获得的原料比热处理方法纯净,因此在市场上售价更高,而且电池中包含的各种物质有95%都能提取出来,还可省去分拣环节。
这套装置年加工能力可达7500吨。
日本野村兴产株式会社
建于日本北海道山区的野村兴产株式会社主要业务是废弃电池处理和废荧光灯处理。
他们每年从全国收购的废电池达13000吨,收集的方式93%是通过民间环保组织收集,7%是通过各厂家收集。
这项业务开展于1985年,目前净化量一直在增加。
以往,主要是回收其中的汞,但目前日该国内电池已经不含汞了,主要回收电池的铁壳和其他金属原料,并进行二次产品的开发制造,如其中一个产品可用于电视机的显像管。
其他国家的相关政策
另外,有的国家还制定了一些相关的政策。
比如美国、日本废旧电池回收后交到企业处理,每处理一吨政府给予一定补贴;
韩国生产电池的厂家,每生产一吨要交一定数量的保证金,用于回收者、处理者的费用,并指定专门的工厂进行处理。
还有的国家对电池生产企业征收环境治理税或对废旧电池处理企业进行减免税等。
落实规定
从其他国家的经验来看,解决电池行业污染的主要措施是调整产品结构,淘汰落后的工艺、产品,这一点是国家强制的。
至于废电池收集、处理或再利用,则都是由行业协会、城市或企业自发进行的。
借鉴其他国家经验,结合国内的经济技术水平、市场规范程度,笔者认为应当科学地认识废电池的环境影响,不能过分夸大其危害。
有关部门应把精力放在淘汰含汞电池上。
至于分类收集处理(或利用),有条件的城市、有技术力量的企业可自己去操作,国家不宜提出强制要求。
具体建议简述如下:
1、加强市场抽查,强制禁汞
淘汰含汞电池的目标步骤已经明确了,大多数企业也是按照国家要求去做的。
但有一部分企业滞后于国家要求,甚至有少数企业冒用别人品牌生产高汞电池。
对这些违法行为,只有加强市场抽查,对继续销售、生产超标电池的企业进行处罚,才能制止。
建议有市场检查、处罚职能的工商、质监部门到销售点取样化验,发现电池汞含量超标的,没收劣质电池、处以罚款,并追究批发者、生产者的责任。
应当通过有奖举报的方式动员社会力量举报生产、销售劣质电池的企业。
2、谨慎收集废电池
前面已经提到,电池中的汞含量较低(即便是高汞电池),消费群体分散,废电池随生活垃圾填埋是不会造成太大污染的(电池外壳的保护作用和大量垃圾的稀释作用使然)。
但如果把大量的废电池集中到一个地方,加上处理不善(如剥开外壳,回收有价值部分,将残渣随意抛弃),则有可能引起局部地区的汞污染。
因此,一些单位、个人在开展收集活动时,应当妥善保管并交给具备存放、处理条件的单位。
在没有符合条件的处理或利用设施之前,不宜大规模收集废电池。
对目前已经收集到的废电池,应当以城市为单位由市政环卫部门安排场所集中贮存。
待符合条件的设施建成后再处理或利用。
3、资源利用
尽管从污染控制的角度考虑可以不单独收集干电池,但一些单位从节约资源的角度希望回收其中的锌、锰、铁等金属。
与其他废物综合利用项目一样,废金属再生行业受原材料市场价格波动、下游需求的冲击较大,在一定的时期内利用废干电池可能入不敷出。
在市场经济条件下,不允许财政对利用废电池的企业进行补贴,只能坚持企业自愿的原则。
如企业具备技术、经营能力,或者从公益事业的角度考虑,即使亏本也愿意干,也可以开展这方面的业务。
含汞电池的再利用设施,应建在人口稀少、环境不敏感(如汞矿等)的地区,技术管理水平应比较先进,规模较大,切忌搞成简陋作坊式的利用厂。
需要说明的是,从事废电池收集利用的单位,也应遵守职业病防治、环保、土地规划等方面的法律法规。
除依法减免外,应当照章纳税。
不能因为节约资源就可以不按法律办事。
4。
治理废弃电池的几点建议
在治理废电池的领域上,随着电池产业的不断发展,不同类型、规格的废电池所需的处理方式、处理技术也相应形成。
因此我们提出了三点建议:
固化深埋、存放于旧矿井、回收再利用。
而废电池回收利用是当前行业管理工作的重点。
采用"
三化"
原则管理废旧电池,即对废旧电池的污染防治,采用减量化,资源化、无害化的指导思想。
加强废电池管理的政策、法规建设,各级政府应以《中华人民共和国固体废弃物污染环境防治法》为指南,根据废电池产生及管理现状以及社会经济发展的外部环境,制定符合实际情况的政策、法规及切实可行的实施细则。
国家极其环境保护行政主管部门应尽早颁布指导全国废电池管理、处置的基本政策、法规。
各省、市应结合自身具体情况的发展需求,制订相应废电池管理、处置的地方政策、法规。
小城镇可以根据当地情况出台必要的实施细则,具体落实废电池的回收利用及处置工作。
废旧电池回收箱很少,市民的意识还很薄弱。
我们希望政府能做很多的废旧电池回收箱挂在每个单位门口、学校门口、商场商店门口、人员密集的地方,营造一种人人习惯动手回收废旧电池的氛围。
政府派专人收集废旧电池。
把废旧的电池的危害宣传给每个市民。
对积极参与废旧干电池回收利用的单位和个人要大力宣传,还要表彰。
从而做到统一回收处理,为减少城市污染。
中国是电池生产和消费大国,废电池污染已成为亟待解决的重大环境问题。
但废旧电池处理回报率低、效益周期长,很难吸引投资者,因此就很难形成产业化规模,并产生效益。
事实上,废旧电池回收业并非无利可图。
废旧电池中含有大量可再生利用的重金属和酸液等物质,如铅酸电池的回收利用主要以废铅再生利用为主,还包括对于废酸以及塑料壳体的利用。
目前,国内废汽车用铅酸电瓶的金属回收利用率大约达到80-85%。
据业内人士估算,按每天处理10万只废电池计算,除去各种费用后,可获利2万元左右;
以70亿只电池、50%的利用率计算,年利润可达6亿多元。
可见,在此领域实施规模经营完全可以创造效益。
回收处理
如果按某些报道呼吁的那样,在中国建造一个专业的、能够批量处理废电池的工厂,是否可行呢?
国家环保总局污控司固体处彭德富工程师介绍说,建设一个废电池回收处理厂,需要投资1000多万元人民币,而且还要每年至少回收4000多吨废旧电池,工厂才能运转起来。
而实际上要回收这样大数量的废电池十分困难。
以首都北京为例,在大力宣传和鼓励下,3年才回收了200多吨。
在环保模范城杭州市,废电池的回收率也只有10%。
据了解,目前瑞士和日本已建好的两家可加工利用废旧电池的工厂,现在也因无人进行加工利用废电池处于停产状态。
这不得不让我们慎重考虑投资建回收厂的问题。
彭德富还介绍说,处理这些集中存放废电池的另一个办法是按照危险废弃物的处理方法集中填埋或存放,但是这样处理一吨需要三四千元的费用,又面临着费用无着落的问题。
据了解,四川省有一家小企业打着"
环保"
的旗号,动用小学生在周六周日帮他们把收集的废电池用锤子敲开,回收其中有价值的电池外壳当废铁卖,而将残渣随意抛弃。
废电池不会对环境构成威胁,很重要的一点是电池包了不锈钢或碳钢外包皮,有效地防止了汞的外漏。
把废电池外面的不锈钢或碳钢外包皮砸开了,里面所含的汞极易渗出,结果电池中的有害物质污染了环境,损害了小学生的身体健康。
这是绝对不能允许的,必须严格禁止。
回收方法
1.废镍氢电池
1.1失效负极合金粉的回收处理
将失效MH/Ni电池外壳剥开,从电池芯中分选出负极片,用超声波震荡和其它物理方法,得到失效负极粉,再经化学处理得到处理后的负极粉,将此负极粉压片,在非自耗真空电弧炉中反复熔炼3~4次。
除去熔炼铸锭表面的氧化层,将其破碎,混合均匀后,用ICP方法测其混合稀土、镍、钴、锰、铝各元素的百分含量,根据储氢合金元素流失的不同,以镍元素的含量为基准,补充其它必要元素,再进行冶炼,最终得到性能优良的回收合金。
1.2失效MH/Ni电池负极合金的回收
将失效负极粉采用化学处理的方法,利用处理液对合金表面的浸蚀,破坏合金表面的氧化物,但又要使合金中未氧化的其它元素及导电剂受到的浸蚀影响降至最小。
采用05mol·
L-1的醋酸溶液,将失效合金粉在室温下处理0.5h,再用蒸馏水洗涤、真空条件下干燥。
结果看出,AB5型储氢合金的主体结构没有变,仍属于CaCu5型六方结构,但负极粉中Al(OH)3和La(OH)3的杂相基本完全消失,说明这些氧化物经化学处理后,表面的氧化物几乎完全被溶解掉。
将化学处理后的失效负极粉与制作电池用的原合金粉以及未经化学处理的失效合金粉,做充放电性能对比,经过化学处理的失效负极粉的放电比容量比未经化学处理的失效负极粉高23mAh·
g-1,说明经过化学处理以后,由于表面氧化物被大部分除去,使失效负极粉中储氢合金的有效成分增加。
XPS测试结果表明,负极粉表面镍原子的浓度由化学处理前的6.79%升高到9.30%,这说明经过化学处理以后,合金的表面形成了具有较高电催化活性的富镍层,这不但提高了储氢电极的电催化活性,而且也提供了氢原子的扩散途径,因而使电极的放电性能提高。
但经过化学处理的失效负极粉与制作电池用的原合金粉相比较,放电比容量仍低90mAh·
g-1,一方面可能是由于合金的氧化不仅仅是局限于表面,也可能会深入到合金的内部,化学处理仅仅是将表面的氧化物除去,颗粒内部的深层氧化并没有被完全除去;
另一方面可能是由于合金的粉化使比表面积增大,同时使合金与O2反应以及受电解液的腐蚀更加容易,两方面原因共同作用导致合金的放电性能下降。
所以,仅仅通过化学处理的方法并不能使失效负极恢复功能,还需进行熔炼处理。
将上述经过化学处理的负极粉,于非自耗电弧炉中进行第一次冶炼。
将所得合金铸锭抛光,去除表面杂质后,分析各元素含量,结果可以看出合金中的元素含量偏离原合金,镍含量远大于原合金粉中的镍含量,这是因为在制作电极的过程中加入镍粉做导电剂,为了有效的利用它,以它为基准,调整其它元素的含量使其符合组成为MmNi3.5Co0.7Mn0.4Al0.3的各元素的配比,进行第二次冶炼。
冶炼后,将得到的合金铸锭破碎,研磨后,测其结构,为CaCu5型,没有其它杂相生成。
将回收的合金粉做充放电性能测试,可以看出,回收合金粉的放电容量比失效负极粉高约100mAh·
g-1,与原合金粉的放电容量相比基本相同,并且回收合金粉的放电平台压比原合金粉的放电平台压高约20mV左右,这可能是由于合金回收的过程中经过数次熔炼,使合金的成分和微观结构得到了改善的原因。
2.废锂离子二次电池
采用碱溶解→酸浸出→P204萃取净化→P507萃取分离钴、锂→反萃回收硫酸钴和萃余液沉积回收碳酸锂的工艺流程,从废旧锂离子二次电池中回收钴和锂。
实验结果表明:
碱溶解可预先除去约90%的铝,H2SO4+H2O2体系浸出钴的回收率达到99%以上;
P204萃取净化后,杂质含量为Al3.5mg/L、Fe0.5mg/L、Zn0.6mg/L、Mn2.3mg/L、Ca<
0.1mg/L;
用P507萃取分离钴和锂,在pH为5.5时,分离因子βCo/Li可高达1×
105;
95℃以上用饱和碳酸钠沉积碳酸锂,所得碳酸锂可达零级产品要求,一次沉锂率为76.5%。
锂离子二次电池由外壳和内部电芯组成,外壳为不锈钢、镀镍金属钢壳或塑料外壳;
电池的内部电芯为卷式结构,主要由正极,负极,隔离膜,电解液组成。
一般电池的正极材料由约90%钴酸锂活性物质,7%~8%乙炔黑导电剂和3%~4%有机粘和剂,均匀混合后涂抹于厚度约20μm铝箔集流体上;
电池的负极由约90%负极活性物质碳素材料,4%~5%乙炔黑导电剂和6%~7%粘和剂均匀混合后涂抹在厚度为15μm铜箔集流体上。
正负极的厚度约0.18~0.20mm,中间用厚度约10μm隔离膜隔开,隔离膜一般用聚乙烯或聚丙烯膜,电解液为六氟磷酸锂的有机碳酸酯溶液。
将废旧锂离子二次电池除去包装及外壳,取出电芯,分离出正极材料。
处理方法
废电池的处理方法也可以从电池的结构入手,首先是表面的皮,它的主要成分是锌。
在初三的实验中也有这样的一个实验:
1、用废弃电池锌皮制取硫酸锌晶体。
实验用品:
烧杯、铁架台(带铁圈)、酒精灯、蒸发皿。
稀硫酸、干电池锌皮。
实验步骤:
(1)、把干电池锌皮表面的杂质除掉后把它们放在烧杯里。
(2)、向烧杯倒进适量稀硫酸,以浸没锌皮为度,待锌皮溶解。
(3)、把反应后的溶液进行过滤。
(4)、把滤液倒入蒸发皿,把蒸发皿放在铁架台的铁圈上,用酒精灯加热。
待蒸发皿析出较多晶体时停止加热,用蒸发皿的余热把滤液蒸干,把硫酸锌晶体回收,放入指定的容器内。
2、第二层的化学物质中的成分很复杂,只有用先进的机器才能从中提取出有关成分,再制成有用的东西。
日本也曾经有一间这样的工厂,把废电池回收,从中提取出汞,但一吨废电池最多可以提取几十千克的汞,所以这间工厂最后由于投资大,回收小而破产倒闭。
虽然政府鼓励发展这种实业,但很多厂家也不敢以身犯险。
最内一层当然是石墨电极啦。
3、电池的最里面的是石墨碳棒,其也有很大的作用,回收后有很大的经济价值。
如果从石墨上削下一些粉末,用手摸一下,有滑腻的感觉。
石墨的这个性质决定了它可以被用作润滑剂。
有些在高温下工作的机器就用石墨粉作润滑剂,这除了应用石墨粉的润滑性外,还应用了它的熔点高,能耐高温的性质。
其实石墨还有另一种重要的用途,就是用来制造人造金刚石,也许很少人知道石墨和金刚石是由碳元素构成的单质,但它们的原子排列顺序不同,导致它们之间的差异很大,把石墨加热到20000C,加压到5×
109帕~1×
1010帕和有催化剂存在条件下,可以制造出那闪闪发亮的人造金刚石。
人们看到那美丽的金刚石,怎么也不会想到它是由那墨黝黝的石墨制成的。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电池 危害 综述