春季新版苏科版八年级数学下学期第10章分式单元复习教案1.docx
- 文档编号:2087873
- 上传时间:2022-10-26
- 格式:DOCX
- 页数:38
- 大小:283.80KB
春季新版苏科版八年级数学下学期第10章分式单元复习教案1.docx
《春季新版苏科版八年级数学下学期第10章分式单元复习教案1.docx》由会员分享,可在线阅读,更多相关《春季新版苏科版八年级数学下学期第10章分式单元复习教案1.docx(38页珍藏版)》请在冰豆网上搜索。
春季新版苏科版八年级数学下学期第10章分式单元复习教案1
第十章分式
一、单元教学目标:
知识目标
1、了解分式的概念。
2、会利用分式的基本性质进行约分和通分。
3、会进行简单的分式加、减、乘、除运算。
4、会解可化为一元一次方程的分式方程序正确性方程中的分式不超过两个)。
5、能够根据具体问题中的数量关系,列出可化为一元一次方程的分式方程,并能根据具体问题的实际意义,检验结果是否合理。
能力目标:
1、经历通过观察、归纳、类比、猜想,获得分式的基本性质、分式乘除运算法则、分式加减运算法则的过程,培养学生的推理能力与恒等变形能力.
2、鼓励学生进行探索和交流,培养他们的创新意识和合作精神.
3.发展学生的求同求异思维,使他们能在复杂环境中明辨是非.。
4、能列可化为一元一次方程的分式方程解简单的应用题,能解决一些与分式、分式方程有关的实际问题,提高分析问题、解决问题的能力和应用意识
情感目标:
1.进一步培养学生的自学能力、思维能力,渗透类比的思想方法.激发学生联系实际问题体验数学知识产生的过程以及热爱数学的情感.
2、通过学生在学习中互相帮助、相互合作,并能对不同概念进行区分,培养大家的团队精神,以及认真仔细的学习态度,为学生将来走上社会而做准备,使他们能在工作中保持严谨的态度,正确处理好人际关系,成为各方面的佼佼者.
3、发展学生的个性,培养他们学习的养成教育,善于独立思考,敢于克服困难和创新精神
二、单元教学重点、难点:
1、重点是探索和理解有关的分式概念、分式的基本性质和分式的运算法则;解可化为一元一次方程的分式方程;
2、难点是解可化为一元一次方程的分式方程及运用分式方程解简单的应用题。
三、单元教学课时:
本章教学时间大约需10课时,具体分配如下
第1节分式1课时
第2节分式的基本性质3课时
第3节分式的加减运算1课时
第4节分式的的乘除运算2课时
第5节分式方程3课时
课题:
10.1分式第1课时共1课时
一、教学目标:
知识目标:
1、了解分式的概念,会判断一个代数式是否是分式。
2、能用分式表示简单问题中数量之间的关系,能解释简单分式的实际背景或几何意义。
3、能分析出一个简单分式有、无意义的条件。
4、会根据已知条件求分式的值。
能力目标:
1、培养学生思考能力和想象能力。
2、能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
情意目标:
鼓励学生进行探索和交流,培养他们的创新意识和合作精神.
二、教学重点难点:
重点:
分式的概念,掌握分式有意义的条件。
难点:
分式有、无意义的条件。
三、教学方法:
类比引导、自主探索
教师活动
学生活动
个人修改意见
一、情境创设:
1、京沪铁路是我国东部沿海地区纵贯南北的交通大动脉,全长1462km,是我国最繁忙的铁路干线之一。
如果货车的速度为akm/h,快速列车的速度是货车的2倍,那么
①货车从北京到上海需要多少时间?
②快速列车从北京到上海需要多少时间?
③已知从北京到上海快速列车比货车少用12小时,你能列出一个方程吗?
2、观察刚才你们所列的式子、方程,它们有什么特点?
引入本课课题——分式。
二、探索活动:
1、两个数相除可以把它们的商表示成分数的形式。
如果用字母分别表示分数的分子和分母,那么可以表示成什么形式呢?
2、列出下列式子:
(1)一块长方形玻璃板的面积为2㎡,如果宽为am,那么长是m。
(2)小丽用n元人民币买了m袋瓜子,那么每袋瓜子的价格是元。
(3)正n边形的每个内角为度。
(4)两块面积分别为a公顷、b公顷的棉田,产棉花分别为m㎏、n㎏。
这两块棉田平均每公顷产棉花______㎏。
3、思考:
(1)这些式子与分数有什么相同和不同之处?
(2)你能归纳一下分式的定义吗?
都具有分数的形式;分母中都含有字母。
分式的概念:
一般地,如果A、B表示两个整式,并且B中含有字母,那么代数式叫做分式,其中A是分式的分子,B是分式的分母。
(3)请你写出几个分式。
(4)下列各式哪些是分式,哪些是整式?
①②③④⑤⑥
⑦⑧⑨
分式有意义的条件为:
分母不等于0。
分式无意义的条件为:
分母等于0。
三、例题教学:
例1、试解释分式所表示的实际意义。
例2、请选择一个你喜欢的a的值,求分式值。
例3、当取什么值时,分式
(1)没有意义?
(2)有意义?
(3)值为零。
四、拓展提高:
1、当取什么值时,分式的值是正数?
2、当x取何值时,分式的值为零?
五、课堂小结:
本节课你学到了哪些知识和方法?
六、布置作业:
见课时学案
学生想象,发表自己的意见
学生发现这些式子中都有字母,与以前的不同。
学生探索,动手
直接说出答案
学生讨论、归纳
学生自己写几个分式,进行分析。
学生尝试用其它实际背景或几何意义说明。
让学生多选几个值,涉及到整数、分数,正数、负数、零等。
学生理解题目要求计算。
回顾本节客所学内容,自我小结。
1、分式与分数的区别。
整式与分式的区别。
2、分式的意义。
五、板书设计:
10.1分式
(1)、分式的定义。
例题学生板演区
(2)、分式有意义的条件例1、
(3)、分式元意义的条件例2、
六、教后感:
课题:
10.2分式的基本性质
(1)第1课时共3课时
一、教学目标:
知识目标:
1、通过分数类比学习,掌握分式的基本性质。
2、会运用分式的基本性质进行相关的分式变形。
能力目标:
培养学生类比的推理能力。
情意目标:
鼓励学生进行探索和交流,培养他们的创新意识和合作精神.
二、教学重点难点:
重点:
分式的基本性质的理解和掌握。
难点:
分式基本性质的简单运用
三、教学方法:
类比引导、自主探索
教师活动
学生活动
个人修改意见
一、情境创设:
1、复习分数的基本性质是哪些?
2、思考分式有这样的性质吗?
一列匀速行驶的火车,如果th行驶skm,速度是多少?
2th行驶2skm,速度是多少?
3th行驶3skm,速度是多少?
…nth行驶nskm,速度是多少?
火车的速度可分别表示为km/h、km/h、km/h、…km/h这些速度相等吗?
二、探索活动:
通过探索,归纳出分式的基本性质:
分式的分子和分母都乘(或除以)同一个不等于0的整式,分式的值不变。
用式子表示就是,。
三、例题教学:
例1、填空:
(1)=
(2)=
(3)(4)
(5)(6)
例2、不改变分式的值,使下列分式的分子与分母中各项系数都化为整数。
(1)
(2)
例3、不改变分式的值,使下列分式的分子和分母的最高次项的系数是正数
(1)
四、拓展提高:
1、将中的a、b都变为原来的3倍,则分式的值()
A.不变B.扩大3倍C.扩大9倍D.扩大6倍
2、把分式中的字母的值变为原来的2倍,而缩小到原来的一半,则分式的值()
A.不变B.扩大2倍C.扩大4倍D.是原来的一半
3、使等式=自左到右变形成立的条件是()
A.x<0B.x>0C.x≠0D.x≠0且x≠7
五、课堂小结:
本课我们学习了分式的基本性质,是什么?
会运用分式的基本性质进行相关的分式变形。
六、布置作业:
见课时学案
分数的性质:
分数的分子和分母都乘(或除以)同一个不等于0的数,那么分数的值不变。
能得出值都相等。
尝试用文字和数学式子表示结论。
通过观察、分析分式的分子、分母发生了什么变化,能正确利用分式的基本性质解题。
感受分式的分子、分母的符号和分式本身的符号,有时可根据需要改变
五、板书设计:
10.2分式的基本性质
(1)
分式的基本性质例1、学生板演区
例2、
例3、
六、教后感:
课题:
10.2分式的基本性质
(2)第2课时共3课时
一、教学目标:
1、知识目标:
1、了解分式约分的意义,能熟练的进行分式约分。
2、理解最简分式的定义。
能力目标:
1、培养学生思考能力和想象能力。
2、能通过回忆分数的约分,类比地探索分式的约分,渗透数学中的类比,分类等数学思想。
情意目标:
鼓励学生进行探索和交流,培养他们的创新意识和合作精神.
二、教学重点难点:
重点:
约分的依据和作用。
难点:
将一个分式化成一个最简分式。
三、教学方法:
类比引导、自主探索
教师活动
学生活动
个人修改意见
一、情境创设:
1、分式的基本性质内容是什么?
2、把分式中的和变为原来的,分式的值()
A.扩大3倍B.缩小3倍C.是原来的D.不变
3、下列等式的右边是怎样从左边得到的?
(1)
(2)=
4、对分数怎样化简?
什么叫分数的约分?
5、类似地,分式也可约分吗?
二、探索活动:
1、填空:
(1)=
(2)=
(3)=(4)=
2、分式的约分:
根据分式的基本性质,把一分式的分子和分母分别除以它们的公因式,叫做分式的约分。
三、例题教学:
例1、约分:
例3、例4
归纳:
分子与分母没有公因式的分式,叫做最简分式。
讨论:
约分要注意些什么?
约分的一般步骤是怎样的?
例2、约分:
(1)
(2)
(3)(4)
例3、下列分式
中,最简分式的个数是()
A、1个B、2个C、3个D、4个
四、拓展提高:
1、先化简,再求值,其中x=;
2、已知==≠0,求的值。
五、课堂小结:
1、什么是分式的约分?
2、什么是最简分式?
3、如何进行分式的约分?
六、布置作业:
见课时学案
复习回顾分式的基本性质。
回顾分数的约分,类比地得到分式的约分。
学生板演,注意如何找出分式中分子、分母的公因式。
学生讨论归纳:
1.分式的分子与分母是单项式时,约分时,先约去分子、分母系数最大公约数,然后约去分子、分母相同因式的最低次幂。
2.分式的分子与分母是多项式时,约分时,先把分子与分母按一个字母降幂排列,再分解因式,然后约分。
约分的步聚:
1.把分子、分母分解因式;
2.约去分子、分母相同因式的最低次幂;
3.尽量把分子、分母的最高次项的系数化为正数。
五、板书设计:
10.2分式的基本性质
(2)
分式的约分例1、学生板演区
例2、
例3、
六、教后感:
课题:
10.2分式的基本性质(3)第3课时共3课时
一、教学目标:
知识目标:
1、了解分式通分的意义,能熟练地进行分式的通分。
2、理解最简公分母的定义。
能力目标:
1、培养学生思考能力和想象能力。
2、能通过回忆分数的通分,类比地探索分式的通分,渗透数学中的类比,分类等数学思想。
情意目标:
鼓励学生进行探索和交流,培养他们的创新意识和合作精神.
二、教学重点难点:
重点:
通分的依据和作用。
难点:
找最简公分母。
三、教学方法:
类比引导、自主探索
教师活动
学生活动
个人修改意见
一、情境创设:
1、分式的基本性质内容是什么?
2、什么是分式的约分?
分式的约分有什么要求?
3、在分数运算中,什么叫分数的通分?
二、探索活动:
1、根据分式的基本性质,把几个异分母的分式化成同分母的分式,叫做分式的通分。
2、试找出分式、的公分母。
归纳:
异分母的分式通分时,取各分母所有因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母。
3、找出分式与的最简公分母。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 春季 新版 苏科版 八年 级数 下学 10 分式 单元 复习 教案