terrestrial carbon sourced OC文档格式.docx
- 文档编号:20782912
- 上传时间:2023-01-25
- 格式:DOCX
- 页数:44
- 大小:39.28KB
terrestrial carbon sourced OC文档格式.docx
《terrestrial carbon sourced OC文档格式.docx》由会员分享,可在线阅读,更多相关《terrestrial carbon sourced OC文档格式.docx(44页珍藏版)》请在冰豆网上搜索。
|
Relatedarticles
Relatedreferenceworkarticles
AbstractAbstract|Figures/TablesFigures/Tables|ReferencesReferences
Abstract
Publicsupportforelectricitygenerationfromrenewableenergysourcesiscommonlyfundedbynon-voluntarytransfersfromelectricityconsumerstoproducers.Apparently,thecost-effectivedispositionoffundsintermsofinducedcapacitydeploymenthastoberegardedakeycriterionforthesuccessofrenewableenergypolicy.
Gridconnectioncostsareamajorcostcomponentintheutilizationofoffshorewindenergyforelectricitygeneration.Inthispaper,theeffectofdifferentattributionmechanismsofthesecostsonoverallcost-effectivenessfromconsumers'
perspectiveisanalyzed.
Themajorresultofthisinvestigationisthatanattributionofgridconnectioncoststogridoperators–asagainsttogenerators–leadstoasmallerproducersurplusand,hence,tolowertransfercostsforelectricityconsumers.ApplyingthisapproachtothedeploymentofUKRoundsIIandIIIoffshorewindfarmscouldleadtoannualsavingsofsocialtransfersof£
1.2bandanequalreductionofproducersurplus.Thisamountwouldbesufficienttofinancethedeploymentofadditional10%ofthecapacityunderconsideration.
ArticleOutline
1.Introduction
2.Background
2.1.Windpowergridintegrationcosts
2.2.Attributionofgridintegrationcosts
2.3.Researchquestion
2.4.Approach
3.Electricitygenerationcostsofoffshorewindpower
4.Theimpactofshallowversussuper-shallowchargingofoffshorewindfarmconnectionsonthecost-effectivenessofpublicsupport
4.1.Demandforelectricitygenerationfromoffshorewindenergy
4.2.Supplycurveforoffshorewindenergy
4.3.Producersurplusofgenerators
4.4.Transfercostsofelectricityconsumers
4.5.Transfercostsavings
5.AssessmentofpotentialtransfercostsavingsinthedeploymentofRoundIIandRoundIIIoffshorewindfarmsintheUK
5.1.SupplycurveforUKRoundsIIandIIIoffshorewindfarms—coreassumptions
5.2.Quantificationofpotentialtransfercostsavings
5.3.Validityofassumptionsoncostparameters
5.4.Improvementofcost-effectivenessthroughjointconnectionapproaches
6.Conclusions
Acknowledgements
AppendixA
References
Purchase
Highlights
►Gridconnectioncostsofmarginalwindfarmaddtosubmarginalproducersurplus.►Overallproducersurplustobepaidforbyelectricityconsumers(transfercosts).►Allocatinggridconnectioncoststogridoperatorsleadstotransfercostsavings.►SavingsforUKRoundsIIandIIIoffshorewindfarmprojectsmayreach£
1.2bperyear.►Thesesavingscouldfinanceadditional10%capacity(+3.3
GW).
44
Middle–LateEocenestructureofthesouthernLevantcontinentalmargin—Tectonicmotionversusglobalsea-levelchange
Tectonophysics,Volume499,Issues1-4,2March2011,Pages165-177
AmitSegev,UriSchattner,VladimirLyakhovsky
DuringthePaleogenegreenhouseepisodeEarthexperiencedthewarmestperiodoftheCenozoicwhileglobalsealevelrosebymorethan100
m.However,geologicalevidencefromtheLevantmargin,northwesternArabianplate,indicatesthatthroughoutthisperiodseabeddeepeningexceeded1000
m.LithologyfromIsrael,Syria,LebanonandJordanismainlypelagicandneritic,interferedbyoccasionalfossilsub-marineslumps.InordertounderstandthisdissimilaritywequantifytheverticaltectonicmotionoftheLevantcontinentalmarginthroughthePaleogene.ThemarginbegantotakeshapeduringtheLatePermiananditwasreactivatedduringtheOligocene.Basedoninformationfromoutcrops,drillholes,seismicreflectionandrefraction,gravity,andpreviouspublications,amulti-layeredmodeloftheLevantlithospherewasestablished.LayersincludetheMoho,topofthecrystallinebasementandcoveringsedimentsuptotheLateEocene.Themodelwasrestoredhorizontallyby100
kmalongtheyoungerDeadSeatransform.Assuminglocalisostaticcompensation,verticalrestorationyieldedthepaleo-bathymetrywhichprevailedacrossnorthwesternArabiaduringtheMiddle–LateEocene.ResultsshowthatfollowingthemarginsubsidencetheCretaceousLevantineplatformbecamerampshapedduringtheEocene.MostpartsofthecentralLevantweresubmergedunder~
200to~
1800
mofwater,whilethepaleo-bathymetricgradientsrangedfrom~
2°
attheshelfto~
6°
attheslope.Theapparentdissimilaritybetweensealevelandourtectonic-basedcalculationsisuptoanorderofmagnitude.Thesedifferencesmayberesolvedbyaccountingforverticaltectonicmotionsandsedimentsupplyrates.Ourresultsstresstheimportanceofthepresentedcrustalstructure.Asopposedtothebackstrippingprocedure,thestructuralmapofthetopEoceneinterfacewasconstructedupwardsfromthewellestablishedtopTuronian(JudeaGroup)interfacesinceonlyscarceandsporadicoutcropsofthetargethorizonareavailable.Wesuggestthatasimilarapproachshouldbeappliedtore-evaluatethedepositionalenvironmentsacrosstheentirecontinentalmarginoftheeasternMediterranean,anareawithprovenhydrocarbonprospects.
1.Introduction
1.1.FormationanddevelopmentoftheLevantmargin
2.ThecentralLevantlithospherestructure
2.1.Crystallinecrust
2.2.Sedimentarysuccession
3.RestorationofsurfacestotheirpositionintheMiddle–LateEocene
3.1.Horizontalrestoration
3.2.Verticalrestoration
4.Discussionandconclusions
ResearchHighlights
►Levantmargin-betweenArabia’sactiveconvergenceandpassivenorthernAfrica.►Recurringtectono-magmaticactivitysinceitsformationinthePermian.►Early-to-middlePaleogenetranquilitydictatesisostaticcompensationandsubsidence.►TectonicsubsidenceandsealevelriseleadtoArabianplate’slargesttransgression.►CalculateEocene-timebathymetryhighlightsdepositionalenvironments.
45
Assessmentofamodifiedmethodfordeterminingthecoolingloadofresidentialbuildings
Energy,Volume35,Issue12,December2010,Pages4726-4730
A.Fouda,Z.Melikyan
Coolingloadcalculationsareessentialinsizingairconditioningsystemequipment.Indesigningenergy,efficientandrenewableenergysourcedcoolingsystemsforbuildings,itisimportanttohavetheexactvaluesofcoolingloadsandseasonalcoolingdemandsofbuildings.Inthispapernewassessmentmethodformoreprecisedeterminingofcoolingloadsandseasonalcoolingdemandsofresidentialbuildingsaredeveloped,whicharenecessaryforrightsolutionsofcoolingefficiencyproblems.ComparingtothemethodofASHRAE,exampleandothermethodsitprovidesmorecorrectresults.Applicationofsuggestedmethodprovidesbetteraccuracyinassessmentofcoolingloadsespeciallyforseasonalaspects,astheytakeintoaccounttheimpactofmorefactors.
2.Methodfordeterminingthecoolingloadsofbuildings
3.Validityofmathematicalmodelprogramandillustrativeexample
4.Methodfordeterminingofseasonalcoolingdemandsforbuildings
4.1.Daytime
4.2.Nighttime
5.Conclusions
46
AMARTebasedsimulatorfortheJETVerticalStabilizationsystem
FusionEngineeringandDesign,InPress,CorrectedProof,Availableonline9April2011
TeresaBellizio,GianmariaDeTommasi,NicolaRisoli,RaffaeleAlbanese,Andrè
NetoandJET–EFDAContributors
Validationbymeansofsimulationisacrucialstepwhendevelopingreal-timecontrolsystems.Modelingandsimulationareanessentialtoolsincetheearlydesignphase,whenthecontrolalgorithmsaredesignedandtested.Thisphaseiscommonlycarriedoutinoff-lineenvironmentssuchasMatlab®
andSimulink®
.
AMARTe-basedsimulatorhasbeenrecentlydevelopedtovalidatethenewJETVerticalStabilization(VS)system.MARTeisthemulti-threadframeworkusedatJETtodeployhardreal-timecontrolsystems.
ThispaperpresentsthesoftwarearchitectureoftheMARTe-basedsimulatoranditshowshowthistoolhasbeeneffectivelyusedtoevaluatetheeffectsofEdgeLocalizedModes(ELMs)ontheVSsystem.Byusingthesimulatoritispossibletoanalyzedifferentplasmaconfigurations,extrapolatingthelimitofthenewverticalamplifierintermsoftheenergyofthelargestrejectableELM.
2.TheVerticalStabilizationsimulator
2.1.Softwarearchitecture
2.2.Human–machineinterface
3.Acasestudy:
largerrejectableELM
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- terrestrial carbon sourced OC
