独立性检验的基本思想及其初步应用说课稿濮阳朱海红Word下载.docx
- 文档编号:20774038
- 上传时间:2023-01-25
- 格式:DOCX
- 页数:6
- 大小:41.35KB
独立性检验的基本思想及其初步应用说课稿濮阳朱海红Word下载.docx
《独立性检验的基本思想及其初步应用说课稿濮阳朱海红Word下载.docx》由会员分享,可在线阅读,更多相关《独立性检验的基本思想及其初步应用说课稿濮阳朱海红Word下载.docx(6页珍藏版)》请在冰豆网上搜索。
1.内容:
独立性检验的基本思想及实施步骤
2.内容解析:
本节课是人教A版(选修)2—3第三章第二单元第二课时的内容.在本课之前,学生已经学习过事件的相互独立性、正态分布及回归分析的基本思想及初步应用。
本节课利用独立性检验进一步分析两个分类变量之间是否有关系,是高中数学知识中体现统计思想的重要课节。
在本节课的教学中,要把重点放在独立性检验的统计学原理上,理解独立性检验的基本思想,明确独立性检验的基本步骤。
在独立性检验中,通过典型案例的研究,介绍了独立性检验的基本思想、方法和初步应用。
独立性检验的基本思想和反证法类似,它们都是假设结论不成立,反证法是在假设结论不成立基础上推出矛盾从而证得结论成立,而独立性检验是在假设结论不成立基础上推出有利于结论成立的小概率事件发生,于是认为结论在很大程度上是成立的。
因为小概率事件在一次试验中通常是不会发生的,所以有利于结论成立的小概率事件的发生为否定假设提供了有力的证据。
学习独立性检验的目的是“通过典型案例介绍独立性检验的基本思想、方法及其初步应用,使学生认识统计方法在决策中的作用”。
这是因为,随着现代信息技术飞速发展,信息传播速度快,人们每天都会接触到影响我们生活的统计方面信息,所以具备一些统计知识已经成为现代人应具备的一种数学素养。
教学重点:
理解独立性检验的基本思想及实施步骤.
二、教学目标与目标解析
1.目标:
①知识与技能目标
通过生活中典型案例的探究,理解独立性检验的基本思想,明确独立性检验的基本步骤,会对两个分类变量进行独立性检验,并能利用独立性检验的基本思想来解决实际问题。
②过程与方法目标
通过探究“吸烟与患肺癌是否有关系”引出独立性检验的问题,借助样本数据的列联表分析独立性检验的实施步骤。
利用课下预习已经由数据直观判断出吸烟与患肺癌可能有关系,这一直觉来自于观测数据,即样本。
问题是这种来自于样本的印象能够在多大程度上代表总体。
这节课就是为了解决这个问题,在学生亲身体验感受的基础上,提高学生的数据分析能力。
③情感态度价值观目标
通过本节课的学习,加强数学与现实生活的联系。
以科学的态度评价两个分类变量有关系的可能性。
培养学生运用所学知识,解决实际问题的能力。
教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。
2.目标解析:
独立性检验是考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度的一种重要的统计方法.利用独立性检验,能够帮助我们对日常生活中的实际问题作出合理的推断和预测.因此,在学习中通过对统计案例的分析,理解和掌握独立性检验的方法,体会独立性检验的基本思想在解决实际问题的应用,以提高我们处理生活和工作中的某些问题的能力.
新课标指出:
学生的数学学习内容应当是现实的、有趣的和富有挑战性的。
从心理学的角度看,青少年有一种好奇的心态、探究的心理。
因此,紧紧地抓住学生的这一特征,引导学生搜集感兴趣的案例数据,利用学生身边的问题如“玩电脑游戏与注意力集中是否有关系”,感悟知识的应用性,使学生在观察、讨论等活动中,逐步提高数据分析能力。
三、教学问题诊断分析
1.本节课学习的必要性
本节课的内容独立性检验对学生来说是全新的内容,为什么有这么一个方法?
为什么要学习这个方法?
通过课前的预习,搜集身边的案例数据,可以让学生体会到本节课知识的应用性。
2.独立性检验原理的理解
独立性检验相当于建立一个判别“两个分类变量之间有关系”这一结论是否成立的规则,并且给出该规则把“两个分类变量之间没有有关系”错判成“两个分类变量之间有关系”的概率。
所以首先要教会学生的是了解并初步理解这个规则,而后才是会用这个规则解决问题。
为此我用“必修三小概率原理检验产品和数学家庞加莱买面包”的两个引例,前置铺垫,让学生先初步了解这一原理的推理方法。
这对学生理解检验原理及规则有着极大的帮助,化解了本节课的教学难点。
3.卡方统计量公式的接受和领会
独立性检验难于理解的一个主要之处在于凭空出现一个卡方统计量,这个随机变量K2是怎样构造出来的,为什么如此构造?
课标对这一部分的要求及教学建议,要求学生领会统计思想在分析和认识客观现象中的重要作用,要求学生从直观上感受方法的合理性,但不要求从数学上给出严格的论证,对于统计案例的教学形式,主要是鼓励学生经历数据处理的过程,培养他们对数据的直观感觉,体会统计方法应用的广泛性、合理性,理解其方法中蘊涵的思想,对于统计案例的内容,只要求学生了解两种统计方法的基本思想及其初步应用,对于其理论基础不做要求,避免学生单纯记忆和机械地套用公式进行计算。
数学课程要讲逻辑推理,但对有些公式、定理不能用高中知识作严格论证。
此时,作为老师,应激发学生去感受公式、定理的合理性,而不应只限于接受、记忆、模仿和练习,应力争揭示数学概念、法则、结论的发展过程和本质,使学生的学习过程成为在教师引导下的“再认识”“再创造”过程,从而追寻数学发展的历史足迹,把数学的学术形态转化为学生易于接受的教育形态。
为了让学生在统计性思维的统领下,更直观地感知这个公式的合理性,进而将本节所介绍的思想方法和谐地同化到学生原有的认知结构中去,不妨用统计性思维,从多个角度探讨公式的合理性,进而达到和谐本节教学的课堂氛围。
为此,我对卡方统计量公式教学的相关细节做了如下
设计:
预设问题:
问题12
2列联表中的2、3行或第2、3列能交换吗?
问题2你能联想随机事件概率的定义来感受卡方统计量公式的来之不易吗?
问题3你能类比方差公式理解卡方统计量公式结构的合理之处吗?
对于以上三个问题,经过学生的积极探讨、打磨后,我用以下三种方式引导启发学生直观而又合理地解决问题。
方式1回忆随机事件A:
:
掷一枚硬币,正面向上,类比,联想
的确定过程。
通过大量的重复试验,事件A发生的频率在常数
附近摆动并趋于稳定,所以可得
。
对于此处,卡方统计量公式应该是通过大量的观察试验并结合我们现在未知的理论研究得来的。
方式2利用类比方差公式的结构特征理解卡方统计量公式。
方差公式中取每个样本数据与样本平均数差的平方即
,这是为防止正负抵消,掩盖真像,公式中的
主要是协调作用:
因样本容量的不同而使方差的值差异太大,意在取平均。
此处,在假设患肺癌与吸烟没有关系的情形之下,易得
,而此处取平方是为了公式的结果是正值,与查对临界值表有关。
公式中的
是因为考虑到抽取样本的不同而的
值差异太大,这与协调样本容量的大小有关。
方式3通过列联表直接计算或等高条形图发现
和
相差很大,就判断两个分类变量之间有关系。
(1)
将上式等号右边的式子乘以常数因子
平方得:
(2)
(1)
(2)是吻合的,
(1)越大,
(2)
也越大,
(1)越小
(2)
也越小
说明:
这个环节如果嵌套在案例的探究独立性检验原理的建构过程中会影响整个教学过程的流畅性,又有冲淡本节教学内容主题之嫌,故我设计安排在探究建构之后,作为反思和补遗也可作为课下思考灵活处理。
4,临界值表的教学处理
教材在这一部分处理上,是引出卡方统计量,结合案例数据利用公式计算得到
的观测值,先进行相应的一个临界值的讲解,而后再给出卡方临界值表,这对于学生是比较难于理解的,为什么就给出这么一个临界值呢?
有这个问题的存在,学生对接下来所谈到的内容会有所怀疑,不一定十分认同。
为了突破这个难点,我采用“先入为主”的思想,把教材后面介绍的卡方临界值表提前讲解,用概率知识解读临界值表的含义,让学生先接受统计学上的知识,而后在应用过程中进一步理解,这样进行调整后,学生临界值表的领会就更容易一些,突破难点。
5.为什么在最后表达结论的时候要出现“在犯错误的概率不超过XX的前提下”这样的术语.
这也是初学者较难理解的问题,原因就在于独立性检验的过程中存在一个小小的漏洞,就是假设“在一次实验中,小概率事件不发生”,而事实上,小概率事件是可能发生的(用反证法,如果始终不发生,就是不可能事件了),而正是因为这一点点漏洞,导致独立性检验的结果可能是错误的,但是犯错误的概率不会太大,我们就把犯错误的最大概率等同于小概率事件发生的概率了。
至于小概率事件所对应的临界值,则属于大学的研究范畴,在此不必做过多解释.
教学难点:
①了解独立性检验的基本思想;
②了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。
四、教学特点与预期效果分析
1.教法特点
①课前预习,用学案辅助教学
由于本节内容较散,理论部分较难,故需教师精心设计学案,提前发放给学生,以提高学生的预习效率.引导学生搜集身边感兴趣的案例数据,激发学习兴趣。
②“问题串”的组织形式,“讲授式”的教学方法
在最初定夺本节课教学模式时比较为难,一方面,按照新课标的理念,注重学生自主探究为主,教师仅仅是引导者(实践证明这有利于学生学会“学习”,尤其是提高自学能力和合作学习能力),然而另一方面,本节内容理论难度较大,而且涉及到很多大学数学的内容,凭高中学生的数学水平难以完成自主探究.因此,在理论部分,还得需要教师讲,教师的“讲授”成为了无奈的选择.不过好在《课程标准》中,不要求学生掌握这部分深奥的理论,只要体会独立性检验的思想,掌握独立性检验的操作步骤.因此,最终定下来的教学模式是“‘问题串’的形式,‘讲授式’的方法”的教学模式.
在“问题串”的指引下,学生研究出解决问题所需要收集的数据,探究课本上案例的分析过程,提炼出解决问题的操作步骤,然后再由教师讲解操作规程背后的理论依据.
③充满生活气息的数学课堂
在《课程标准》理念下,“数学在生活中的应用”地位空前提高,教材中引入、例题甚至是课后习题的编写,都有大量生活的影子.而本节课《独立性检验》正是一个贴近生活的数学范畴,它可以解决两件扑朔迷离事情之间到底有关还是无关的问题.因此本课从引入(吸烟与患肺癌)到例题(秃顶与心脏病;
高中生性别与是否喜欢数学课程之间的关系)到练习(玩电脑游戏与注意力是否集中)再到课后作业题,全部都有着实际生活的影子.
2.预期效果分析
通过本节课的教学,学生应能掌握独立性检验的操作步骤,并能够解决相关的实际问题,同时也可以初步体会到独立性检验的大致思想.而对独立性检验思想的更进一步认识和一些细节性的说法,则应该放在下一个课时,通过更多正面和反面的例子予以进行.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 独立性 检验 基本 思想 及其 初步 应用 说课稿 濮阳 朱海红