数学建模论文葡萄酒的评价Word格式文档下载.docx
- 文档编号:20737623
- 上传时间:2023-01-25
- 格式:DOCX
- 页数:30
- 大小:1.03MB
数学建模论文葡萄酒的评价Word格式文档下载.docx
《数学建模论文葡萄酒的评价Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《数学建模论文葡萄酒的评价Word格式文档下载.docx(30页珍藏版)》请在冰豆网上搜索。
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用):
评
阅
人
分
备
注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
一、问题重述
葡萄酒是用新鲜的葡萄或葡萄汁经发酵酿成的酒精饮料。
通常分红葡萄酒和白葡萄酒两种。
前者是红葡萄带皮浸渍发酵而成;
后者是葡萄汁发酵而成的。
医学研究表明:
葡萄的营养很高,而以葡萄为原料的葡萄酒也蕴藏了多种氨基酸、矿物质和维生素,这些物质都是人体必须补充和吸收的营养品。
而确定葡萄酒质量时一般是通过聘请一批有资质的评酒员进行品评。
每个评酒员在对葡萄酒进行品尝后对其分类指标打分,然后求和得到其总分,从而确定葡萄酒的质量。
酿酒葡萄的好坏与所酿葡萄酒的质量有直接的关系,葡萄酒和酿酒葡萄检测的理化指标会在一定程度上反映葡萄酒和葡萄的质量。
附件1给出了某一年份一些葡萄酒的评价结果,附件2和附件3分别给出了该年份这些葡萄酒的和酿酒葡萄的成分数据。
请尝试建立数学模型讨论下列问题:
1.分析附件1中两组评酒员的评价结果有无显著性差异,哪一组结果更可信?
2.根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级。
3.分析酿酒葡萄与葡萄酒的理化指标之间的联系。
4.分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的影响,并论证能否用葡萄和
萄酒的理化指标来评价葡萄酒的质量?
二、问题的分析
针对问题一,要讨论的是一、二两组品酒员对葡萄酒的评分结果有无显著性差异,我们可以对附件一给出的数据进行分析处理,我们对每个品酒员分别对每个样品酒的指标评分,对红、白酒单独处理,且处理方法相同从而得出可靠结论。
针对问题二,,我们考虑将众多指标数据经过转换,统一成与感官排序一样的排序类型数据,并把转换后的指标即可直接用来对葡萄进行分级。
对所考虑的众多变量用数学统计方法,经过正交化处理,变成一些相互独立、为数较少的综合指标(即主导因子)后根据酿酒葡萄的理化指标和葡萄酒的质量用聚类分析-K-均值法(快速聚类法)对酿酒葡萄分为三级。
针对问题三,我们对附件二的数据进行处理并经过查阅资料可以得出红葡萄酒的理化指标主要影响因素有花色苷、单宁、总酚、酒总黄酮,白葡萄酒的理化指标的主要影响因素有单宁、总酚、酒总黄酮。
在此基础上利用matlab软件分析酿酒葡萄与葡萄酒的理化指标之间的偏相关系数从而得出酿酒葡萄与葡萄酒的理化指标之间的联系。
针对问题四,我们利用SPSS双变量相关性分析法分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的相关关系,可知酿酒葡萄和葡萄酒的理化指标与葡萄酒质量相关显著,从而得出能用葡萄和萄酒的理化指标来评价葡萄酒的质量的结论。
三、基本假设
由于葡萄酒的主要质量指标大体可分为感官指标和理化指标两大类。
感官指标主要指色泽、香气、滋味和典型性方面的要求,理化指标主要指酒精含量(酒精度)、酸度和糖分指标。
根据各个指标的不同影响,应要求,对葡萄酒的质量进行评价,为了更好的对葡萄酒的质量做出评价,减少部分不必要的影响,可作出以下假设:
1、假设酿酒葡萄在利用前,果肉和果汁等主要成分及各种有效成分都极小损失(即忽略不计)
2、假设在酿酒工具不影响酒的质量
3、酿酒方式以及酿酒过程对酒的品质无明显影响
4、不同种类酿酒葡萄的成分数据值统一标准无差异
5、不同种类葡萄酒的成分数据值统一标准无差异
6、品酒的先后打分没有影响
7、检测理化指标为标准值无差异、
8、假设两个水平下的数据都大致服从正态分布。
9、假设各品酒员的评分数据都相互独立。
10、假设酿造葡萄酒的环境是相同的。
11、假设不考虑多种葡萄可制成一种酒,只考虑一种葡萄制成一种酒;
12、假设本文所引用的数据、资料均真实可靠。
四、符号说明
问题一:
问题三:
五、模型的建立与求解
(一)对于问题一
1、对于红葡萄酒或白葡萄酒,10个品酒员对每种酒样品的总平均分就是这个组的最终评分。
2、求解如下:
采用将这两组数据看作一个分别看作是两个单因子变量实验,水平有两个分别是第一组、第二组,以下分别是两组品酒员对红葡酒和白葡萄酒评分的平均分折线图。
从附件一的数据我们利用MATLAB软件编程
红酒
m=[62.780.380.468.673.372.271.572.371.874.270.153.974.67358.774.979.359.978.679.477.177.285.67869.273.873]'
;
y=[68.173.774.671.272.166.365.36678.268.861.668.368.872.665.769.973.665.472.675.872.271.677.171.568.27271.5]'
z=[x,y];
m=mean(z)
v=var(z)
cz=cov(z)
cv=diag(cz)
corz=corrcoef(z)
ex1307
平均数
=72.7259
=70.4704
方差
=51.4851
=15.5006
白酒
x=[8274.278.379.47168.477.571.472.974.372.363.365.97272.47478.873.172.277.876.47175.973.377.181.364.881.3]'
y=[77.975.875.676.981.575.574.272.380.479.871.472.473.977.178.467.380.376.776.476.679.277.476.179.574.37779.6]'
ex1307
=74.0107
=76.5321
=23.0788
=10.0549
我们利用U检验法取置信水平为95%利用公式可计算得出对于红酒它的U值为1.43对数据进行处理以及检验
(二)对于问题二的分析、模型建立与求解
根据酿酒葡萄的理化指标和葡萄酒的质量对酿酒葡萄进行分级——聚类分析-K-均值法(快速聚类法)
根据题意要将葡萄的理化指标与葡萄酒的质量统一结合作为参考。
而葡萄酒质量则是通过问题一中感官评价的得分反应的。
由于理化指标过多,因此在解决本问时,首先应该完成对指标的处理,尤其是怎样将附表三的芳香物质与附表二中的理化指标结合起来。
由于指标的繁杂,且难以确定指标是偏大型还是偏小型,因此,可考虑将众多指标数据经过转换,统一成与感官排序一样的排序类型数据,这样,转换后的指标即可直接用来对葡萄进行分级。
题目要求我们根据酿酒葡萄的理化指标和葡萄酒的质量对酿酒葡萄进行分级。
经验告诉我们,葡萄的理化指标越合理、葡萄酒的质量越好,该酿酒葡萄的质量也就越好。
这就要求我们分析葡萄的具体理化对葡萄的综合得分的贡献,并结合所酿葡萄酒的得分去评价葡萄的等级。
在葡萄品质的评价过程中,如果将葡萄所具备的每个理化指标不分主次进行评判不仅会增加工作量,也极有可能对评判结果产生比较大的影响。
因此,必须对所考虑的众多变量用数学统计方法,经过正交化处理,变成一些相互独立、为数较少的综合指标(即主导因子)。
2、对此提,我们根据酿酒葡萄的理化指标和葡萄酒的质量对酿酒葡萄进行分级——聚类分析-K-均值法(快速聚类法)
以下是利用酿酒红葡萄的理化指标对酿酒葡萄酒以快速聚类法进行分级:
表2.1
输出结果中,表2.2表示的是初始聚类的中心,也就是种子点
表2.2
表2.3表示的是迭代历史记录
表2.3
表2.4
表2.4是聚类表,表示的是每个个案的分类情况:
第3列“聚类”表示的是该案例属于哪一类,第4列“距离”表示该案例与其所属类别重心之间的距离。
分析上表可知,若采用“K-均值聚类法(快速聚类法)”
第1类包括样品1、5、8、10、13、14、16、17、24、25、26、27
第2类包括样品2、4、6、7、9、11、12、15、18、19、20、20、22、23
第3类包括样品321
。
表2.5
表2.5表示的是最终聚类中心,可以看出,第3类的平均指标最高,第2类居中,第3类最低
表2.6
表2.6表示的是
(1)最终聚类中心间的距离,可以看出,第1类与第2类之间的距离要比第1类与第3类之间的距离小。
(2)每个聚类中的案例数,可以看出,第1类有12个样本,第2类中有13个样本,第3类有2个样品
(2)对酿酒白葡萄进行分类利用酿酒白葡萄指标对白葡萄进行分级,:
在SPSS中运行程序(相关程序见附件一),得到如下图表
聚类成员如下:
根据图表内容,将酿酒白葡萄分为3类:
第1类包括样品:
3、7、8、11、12、13、16、26
第2类包括样品:
1、2、4、5、6、9、10、14、15、17、18、19、20、21、22、23、24、25、27
第3类包括样品:
28
(三)对于问题三的模型建立、分析与求解
对附件二的数据进行主成分分析可以得出红葡萄酒的理化指标的主要影响因素有花色苷、单宁、总酚、酒总黄酮,白葡萄酒的理化指标的主要影响因素有单宁、总酚、酒总黄酮。
在此基础上利用matlab软件分析酿酒红葡萄与红葡萄酒的理化指标之间的偏相关系数如下
对于白酒单宁
n1=[2.947,2.239,2.990,3.148,2.626,4.502,4.729,1.672,4.434,6.781,3.312,3.212,2.129,2.388,2.751,2.228,2.247,5.783,2.217,3.141,1.952,6.463,3.389,8.506,2.757,5.517,6.251,4.583];
n3=[2.557,1.334,3.809,1.548,2.379,6.360,6.824,2.838,2.785,3.487,4.404,4.314,7.044,2.393,5.190,3.135,2.323,6.261,2.152,2.341,0.744,2.710,2.508,7.923,2.625,2.816,9.526,3.885];
h=[1.620,1.233,2.009,2.017,1.595,1.289,1.374,1.513,1.844,2.058,1.415,2.307,1.515,1.320,2.530,1.279,1.549,1.330,1.963,2.676,1.204,1.897,1.330,4.473,1.505,1.569,3.375,2.029];
saveex1330_datan1n3h
loadex1330_data
n=[ones(28,1),n1'
n3'
];
[b,bint,r,rint,stats]=regress(h'
n);
b
bint
stats
ex1940
相关参数b=
0.8555
0.1783
0.0863
从而得出酿酒红葡萄与红葡萄酒各指标间的联系:
酿酒红葡萄花色苷、总酚、单宁、总糖与红葡萄酒的单宁呈正相关性,而酒总黄酚与红葡萄酒的单宁呈负相关性而且相关性显著;
酿酒红葡萄的花色苷、总酚、单宁、苹果酸与红葡萄酒的花色苷的相关性极强;
酿酒红葡萄的花色苷、总酚、单宁、酒总黄酮与红葡萄酒的酒总黄酮程正相关性,相关性显著;
酿酒红葡萄的花色苷、总酚、单宁、酒总黄酮与红葡萄酒的总酚相关性显著;
酿酒白葡萄与白葡萄酒各指标间的联系:
酿酒白葡萄的单宁、酒总黄酮与白葡萄酒的单宁呈正相关性,且相关性较显著;
酿酒白葡萄的总酚、蛋白质与白葡萄酒的酒总黄酮呈正相关性,酿酒白葡萄酒总黄酮与白葡萄酒的酒总黄酮呈负相关性,但相关性都较显著;
酿酒白葡萄的单宁、酒总黄酮与白葡萄酒的总酚呈正相关性,酿酒白葡萄总酚与白葡萄酒的总酚呈负相关性,但相关性都较显著;
酿酒白葡萄的总酚、单宁与白葡萄酒的DPPH半抑制体积呈正相关性,且相关性显著。
(四)对于问题四的模型建立、分析与求解
利用SPSS对附件二、三的数据进行分析结果如下:
表4.1:
SPSS数据分析结果
表4.2
再利用SPSS双变量相关性分析法分析酿酒葡萄和葡萄酒的理化指标对葡萄酒质量的相关关系如下:
由表可看出酿酒葡萄和葡萄酒的理化指标对葡萄酒质量相关显著,故可用葡和
葡萄酒的理化指标来评价葡萄酒的质量。
六、结果分析、验证与模型检验及修正
本文主要应用数理统计、多元回归分析、相关分析、聚类分析等知识。
根据数理统计知识,我们利用SPSS进行数据处理研究,判断出两组评酒员的评酒结果有显著性差异,并选择出数据较为可靠的一组。
根据聚类分析对数据处理研究,基本得到需要的答案。
但依旧存在很多不足之处:
(1)假设评酒员对每种葡萄酒的评价结果大致符合正太分布;
(2)假设酿造葡萄酒的环境是相同的;
(3)只考虑低部分芳香物质影响酒的香气,忽略了其他成分的影响。
七、模型的推广
本文利用聚类分析对给定的数据进行处理,在SPSS中实现等级的划分。
该模型用于生活实践中,也可以解决很多实际问题,例如医学实践中根据各种化验结果、疾病症状、体征判断患者患的是什么病;
体育选材中根据运动员的体形、运动成绩、生理指标心理素质指标、遗传因素判断是否选入运动队继续培养,等等。
它在生活中有广泛的适用性。
八、模型的评价与改进
(一)模型优缺点分析
1、模型的优点:
简单快速地把葡萄酒进行分级,还有利于厂家再生产葡萄酒过程中要注意的问题。
2、模型的缺点:
在建模过程中,由于葡萄酒在生产过程中及装酒的各种要求,要注意一下问题:
(1)葡萄酒在包装运输过程要注意的是:
瓶装酒须装入绿色、棕色或无色玻璃瓶中,瓶口封闭严密,不得有漏气、漏酒现象。
(2)酒瓶外部要贴有整齐干净的标签。
(3)输酒设备、灌装设备、瓶塞等应彻底清洗消毒
空瓶,尤其是回收的空瓶,应先经挑拣,剔除有异臭和不易洗净的空瓶,并进行严格的清洗和消毒。
九、参考文献
[1]孙祝岭徐晓岭,数理统计,北京:
高等教育出版社,2009;
[2]茆诗松王静龙,数理统计,上海:
华东师范大学出版社,1990;
[3]王正林龚纯何倩,精通MATLAB科学计算(第2版)北京:
电子工业出版社,2009.8;
[4]卢纹岱,统计分析,北京:
电子工业出版社,2000;
[5]王颉,试验设计与SPSS应用,北京:
化学工业出版社,2007;
[6]袁志发,周静芋,多元统计分析,北京:
科学出版社,2002。
十、附录
附件一:
在SPSS中运行聚类分析的程序,对酿酒白葡萄进行分类
聚类成员:
附件二:
白葡萄酒酒总黄酚:
n2=[5.336,5.090,6.972,5.248,6.323,10.541,10.267,5.134,5.814,7.728,7.854,8.483,11.774,5.324,8.871,5.007,6.575,11.957,4.725,5.251,4.367,6.409,5.127,10.755,7.666,5.816,16.965,6.567];
n4=[496.457,538.451,467.239,496.201,467.203,499.080,560.343,493.739,482.855,515.756,557.441,457.649,459.397,524.857,546.446464.819,416.876,581.913,455.675,479.934,585.359,402.156,505.339,629.801,516.862,496.835,642.373,450.458];
h=[0.105,0.510,3.669,1.132,1.414,0.079,3.931,0.577,0.100,1.563,2.257,1.492,2.036,2.544,0.942,1.923,0.500,2.878,0.408,0.901,0.541,0.089,0.100,3.305,2.334,0.865,7.655,0.423];
saveex1330_datan2n3n4h
n=[ones(28,1),n2'
n4'
ex1940
b=
-5.2958
0.3722
-0.0557
0.0085
bint=
-9.3458-1.2458
-0.07630.8208
-0.65400.5425
-0.00020.0173
stats=
0.618312.95670.00001.1690
白葡萄酒总酚:
h=[1.264,1.104,1.820,1.485,1.537,1.176,1.202,0.472,1.287,1.325,1.276,1.998,1.356,1.320,1.807,1.307,1.269,1.343,1.343,1.315,1.029,1.380,1.114,3.434,1.459,1.258,2.539,1.544];
saveex1330_datan1n2n3h
n2'
0.7170
0.1077
-0.0107
0.1093
0.10981.3243
-0.00620.2217
-0.18230.1609
-0.12840.3471
0.43586.17910.00290.1757
白葡萄酒DPPH半抑制体积:
n5=[4.14,3.96,3.74,3.64,4.15,4.99,2.86,3.75,3.85,3.66,3.26,2.41,3.40,3.50,3.59,5.15,6.27,3.35,3.06,5.19,3.66,4.74,5.39,2.64,2.92,3.85,2.66,3.57];
n6=[0.3267,0.3061,0.2837,0.3685,0.2462,0.3369,0.3709,0.1045,0.3787,0.3421,0.2320,0.4490,0.4094,0.4177,0.3540,0.0976,0.2599,0.2113,0.2004,0.3350,0.2526,0.3660,0.3600,0.4066,0.2125,0.2998,0.3850,0.3654];
h=[0.0348,0.0331,0.0474,0.0526,0.0406,0.0420,0.0522,0.0392,0.0400,0.0640,0.0243,0.0817,0.0470,0.0491,0.0738,0.0315,0.1321,0.0385,0.0373,0.0544,0.0464,0.0498,0.0382,0.1434,0.0306,0
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 论文 葡萄酒 评价