最新人教版八年级数学上册第十四章教案Word文档格式.docx
- 文档编号:20723334
- 上传时间:2023-01-25
- 格式:DOCX
- 页数:41
- 大小:95.63KB
最新人教版八年级数学上册第十四章教案Word文档格式.docx
《最新人教版八年级数学上册第十四章教案Word文档格式.docx》由会员分享,可在线阅读,更多相关《最新人教版八年级数学上册第十四章教案Word文档格式.docx(41页珍藏版)》请在冰豆网上搜索。
(1)23×
24=(2×
2×
2)×
(2×
2)=2();
(2)53×
54=_____________=5( );
(3)(-3)7×
(-3)6=___________________=(-3)();
(4)(
)3×
(
)=___________=(
)();
(5)a3·
a4=________________a( ).
提出问题:
①这几道题目有什么共同特点?
②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?
【学生活动】独立完成,并在黑板上演算.
【教师拓展】计算a·
a=?
请同学们想一想.
【学生总结】a·
a=
=am+n
这样就探究出了同底数幂的乘法法则.
二、范例学习,应用所学
【例】计算:
(1)103×
104;
(2)a·
a3;
(3)a·
a3·
a5;
(4)x·
x2+x2·
x
【思路点拨】
(1)计算结果可以用幂的形式表示.如
(1)103×
104=103+4=107,但是如果计算较简单时也可以计算出得数.
(2)注意a是a的一次方,提醒学生不要漏掉这个指数1,x3+x3得2x3,提醒学生应该用合并同类项.(3)上述例题的探究,目的是使学生理解法则,运用法则,解题时不要简化计算过程,要让学生反复叙述法则.
【教师活动】投影显示例题,指导学生学习.
【学生活动】参与教师讲例,应用所学知识解决问题.
三、随堂练习,巩固深化
据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×
1019个水分子,那么,每个人每年要用去多少个水分子?
四、总结
1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系,使用方法:
乘积中,幂的底数不变,指数相加.
2.应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立,底数和指数,它既可以取一个或几个具体数,由可取单项式或多项式.
3.运用幂的乘法运算性质注意不能与整式的加减混淆.
五、布置作业
P96习题14.1第1
(1),(2),2
(1)题.
14.1.2幂的乘方
教学对象:
八年级(4)、(6)班
备课时间:
2016/10/30
PPT课件、教案、课本等
1.知识与技能:
理解幂的乘方的运算性质,进一步体会和巩固幂的意义;
通过推理得出幂的乘方的运算性质,并且掌握这个性质.
2.过程与方法:
经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.
3.情感与价值观:
培养学生合作交流意义和探索精神,让学生体会数学的应用价值.
教学重点:
幂的乘方法则.
幂的乘方法则的推导过程及灵活应用.
一、创设情境,导入新知
大家知道太阳,木星和月亮的体积的大致比例吗?
我可以告诉你,木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,请同学们计算一下太阳和木星的体积是多少?
(球的体积公式为V=
r3)
【学生活动】进行计算,并在黑板上演算.
解:
设地球的半径为1,则木星的半径就是102,因此,木星的体积为
V木星=
·
(102)3=?
(引入课题).
【教师引导】
(102)3=?
利用幂的意义来推导.
【学生活动】有些同学这时无从下手.
【教师启发】请同学们思考一下a3代表什么?
(102)3呢?
【学生回答】a3=a×
a×
a,指3个a相乘.(102)3=102×
102×
102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×
102×
102=102+2+2=106,因此(102)3=106.
【教师活动】下面有问题:
利用刚才的推导方法推导下面几个题目:
(1)(a2)3;
(2)(24)3;
(3)(bn)3;
(4)-(x2)2.
【学生活动】推导上面的问题,个别同学上讲台演示.
【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少?
【学生活动】归纳总结并进行小组讨论,最后得出结论:
(am)n==amn.
评析:
通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:
幂的乘方,底数不变,指数相乘.
二、范例学习,应用所学
【例】计算:
(1)(103)5;
(2)(b3)4;
(3)(xn)3;
(4)-(x7)7.
【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.
【教师活动】启发学生共同完成例题.
【学生活动】在教师启发下,完成例题的问题:
并进一步理解幂的乘方法则:
解:
(1)(103)5=103×
5=1015;
(3)(xn)3=xn×
3=x3n;
(2)(b3)4=b3×
4=b12;
(4)-(x7)7=-x7×
7=-x49.
三、随堂练习,巩固练习
课本P97练习.
【探研时空】
计算:
-x2·
x2·
(x2)3+x10.
【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.
【学生活动】书面练习、板演.
1.幂的乘方(am)n=amn(m,n都是正整数)使用范围:
幂的乘方.方法:
底数不变,指数相乘.
2.知识拓展:
这里的底数、指数可以是数,可以是字母,也可以是单项式或多项式.
3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”.
课本P104习题14.1第1、2题.
14.1.3积的乘方
八年级(4)、(6)班
2016/10/31
教学用具:
教学目标:
通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质.
2.过程与方法:
经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.
通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.
积的乘方的运算.
教学难点:
积的乘方的推导过程的理解和灵活运用.
一、回顾交流,导入新知
【教师活动】提问学生在前面学过的同底数幂的运算法则;
幂的乘方运算法则的内容以及区别.
【学生活动】踊跃举手发言,解说老师的提问.
【课堂演练】
计算:
(1)(x4)3
(2)a·
a5(3)x7·
x9(x2)3
【学生活动】完成上面的演练题,并从中领会这两个幂的运算法则.
同学们思考怎样计算(2a3)4,每一步的根据是什么?
【学生活动】先独立完成上面的问题,再小组讨论.
(2a3)4=(2a3)·
(2a3)·
(2a3)·
(2a3)(乘方的含义)
=(2·
2·
2·
2)·
(a3·
a3·
a3)(乘法交换律、结合律)
=24·
a12(乘方的意义与同底数幂的乘法运算)
=16a12
【教师活动】提出应用以上分析问题的过程,再计算(ab)4,说出每一步的根据是什么?
【学生活动】独立思考之后,再与同学交流.
(ab)4=(ab)·
(ab)·
(ab)·
(ab)(乘方的含义)
=(aaaa)·
(bbbb)(交换律、结合律)
=a4·
b4(乘方的含义)
【教师提问】
(1)请同学们通过计算,观察乘方结果之后,你能得出什么规律?
(2)如果设n为正整数,将上式的指数改成n,即:
(ab)n,其结果是什么?
【学生活动】回答出(ab)n=anbn.
【师生共识】我们得到了积的乘方法则:
(ab)n=anbn(n为正整数),这就是说,积的乘方等于积的每个因式分别乘方,再把所得的幂相乘.
(ab)n==anbn
【教师活动】拓展训练:
三个或三个以上的积的乘方,如(abc)n,
【学生活动】回答出结果是(abc)n=anbn cn.
【例】计算:
(1)(2b)3;
(2)(2×
a3)2;
(3)(-a)3;
(4)(-3x)4.
【教师活动】组织、讲例、提问.
【学生活动】踊跃抢答.
课本P98练习.
【探研时空】
计算下列各式:
(1)(-
)2·
(-
)3;
(2)(a-b)3·
(a-b)4;
(3)(-a5)5;
(4)(-2xy)4;
(5)(3a2)n;
(6)(xy3n)2-[(2x)2]3;
(7)(x4)6-(x3)8;
(8)-p·
(-p)4;
(9)(tm)2·
t;
(10)(a2)3·
(a3)2.
1.积的乘方(ab)n=anbn(n是正整数),使用范围:
底数是积的乘方.方法:
把积的每一个因式分别乘方,再把所得的幂相乘.
2.在运用幂的运算法则时,注意知识拓展,底数和指数可以是数,也可以是整式,对三个以上因式的积也适用.
1.课本P104习题15.1第1、2题.
14.1.4单项式乘以单项式
2016/11/2
1.知识与技能:
理解整式运算的算理,会进行简单的整式乘法运算.
2.过程与方法:
经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.
培养学生推理能力计算能力,通过小组合作与交流,增强协作精神.
单项式乘法运算法则的推导与应用.
一、创设情境,操作导入
【手工比赛】
让学生在课前准备一张自己最满意的照片,自己制作一个美丽的像框.上课之后,首先来做游戏,“才艺大献”,把自己的照片加一个美丽的像框,看谁在10分钟之内,可以装饰出美丽的照片,谁的最好,老师就送他个好礼物.
【学生活动】完成上述手工制作,与同伴交流.
【教师引导】在学生完成之后,教师拿出一张美丽的风景照片,提出问题:
你们看这幅美丽的风景图片,如何装饰它会更漂亮?
【学生回答】加一个美丽的像框.
【引入课题】假如要加一个美丽的像框,需要知道这幅图片的大小,现在告诉你,图片的长为mx,宽为x,你能计算出图片的面积吗?
ﻭ【学生活动】动手列式,图片的面积为mx·
x=?
【教师提问】对于mx·
的问题,前面我们已学习了乘法的运算律以及幂的运算法则,现在请你运用已学知识推导出它的结果.
【学生活动】先独立思考,再与同伴交流.
实际上mx·
x=m(x·
x)=m·
x2=mx2.
【拓展延伸】请同学们继续计算mx·
x=?
【学生活动】先独立完成,再与同伴交流,踊跃上台演示.
mx·
x=m·
x·
x=m·
x2=
mx2.
【教师活动】请部分学生上台演示,然后大家共同讨论.
【继续探究】计算:
(1)x·
mx;
(2)2a2b·
3ab3;
(3)(abc)·
b2c.
【学生活动】独立完成,再与同学交流.
【教师活动】总结新知:
我们根据自己做的题目的原则,得到单项式与单项式相乘的运算法则:
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,放在积的因式中.
【例1】计算.
(1)3x2y·
(-2xy3) (2)(-5a2b3)·
(-4b2c)
【思路点拨】例1的两个小题,可先利用乘法交换律、结合律变形成数与数相乘,同底数幂与同底数幂相乘的形式,单独一个字母照抄.
【例2】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×
103米/秒,则卫星运行3×
102秒所走的路程约是多少?
【教师活动】:
引导学生参与到例1,例2的解决之中.
【学生活动】参与到教师的讲例之中,巩固新知.
三、问题讨论,加深理解
【问题牵引】
1.a·
a可以看作是边长为a的正方形的面积,a·
ab又怎样理解呢?
2.想一想,你会说明a·
b,3a·
2a以及3a·
5ab的几何意义吗?
【教师活动】问题牵引,引导学生思考,提问个别学生.
【学生活动】分四人小组,合作学习.
四、随堂练习,巩固深化
课本P145练习第1、2题.
五、总结
请同学们归纳出单项式乘以单项式的运算法则.在应用单项式乘以单项式运算法则时应注意些什么?
六、布置作业
1.课本P149习题15.1第3题.
2.选用课时作业设计.
14.1.5单项式与多项式相乘
八年级(4)、(6)班
2016/11/2
PPT课件、教案、课本等
让学生通过适当尝试,获得一些直接的经验,体验单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.
2.过程与方法:
经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.
3.情感与价值观:
培养良好的探究意识与合作交流的能力,体会整式运算的应用价值.
单项式与多项式相乘的法则.
整式乘法法则的推导与应用.
一、回顾交流,课堂演练
1.口述单项式乘以单项式法则.
2.口述乘法分配律.
3.课堂演练,计算:
(1)(-5x)·
(3x)2
(2)(-3x)·
(-x) (3)
xy·
xy2
(4)-5m2·
mn) (5)-
x4y6-2x2y·
x2y5)
二、创设情境,引入新课
小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了
a米的空白,请同学们列出这幅画的画面面积是多少?
【学生活动】小组合作,讨论.
【教师活动】在学生讨论的基础上,提问个别学生.
【情境问题2】夏天将要来临,有3家超市以相同价格n(单位:
元/台)销售A牌空调,他们在一年内的销售量(单位:
台)分别是x,y,z,请你采用不同的方法计算他们在这一年内销售这种空调的总收入.
【教师活动】引导学生在不同的代数式呈现中,找到规律:
单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.
三、范例学习,应用所学
【例1】计算:
(-2a2)·
(3ab2-5ab3).
解:
原式=(-2a2)(3ab2)-(-2a2)·
(5ab3)
=-6a3b2+10a3b3
【例2】化简:
-3x2·
xy-y2)-10x·
(x2y-xy2)
解:
原式=-x3y+3x2y2-10x3y+10x2y2
=-11x3y+13x2y2
【例3】解方程:
8x(5-x)=19-2x(4x-3)
40x-8x2=19-8x2+6x
40x-6x=19
34x=19
x=
课本P146练习.
【探研时空】
计算:
(1)5x2(2x2-3x3+8) (2)-16x(x2-3y)
(3)-2a2(
ab2+b4) (4)(
x2y3-16xy)·
xy2
1.单项式与多项式相乘法则:
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.
2.单项式与多项式相乘,应注意
(1)“不漏乘”;
(2)注意“符号”.
课本P104习题14.1第4、6题.
14.1.6多项式与多项式相乘
2016/11/6
1.知识与技能:
让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.
经历探索多项式与多项式相乘的运算法则的推理过程,体会运算的算理.
3.情感与价值观:
通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.
多项式与多项式的乘法法则的理解及应用.
多项式与多项式的乘法法则的应用.
一、创设情境,操作感知
【动手操作】
首先,在你的硬纸板上用直尺画出一个矩形,并且分成如下图1所示的四部分,标上字母.
【学生活动】拿出准备好的硬纸板,画出上图1,并标上字母.
【教师活动】要求学生根据图中的数据,求一下这个矩形的面积.
【学生活动】与同伴交流,计算出它的面积为:
(m+b)×
(n+a).
【教师引导】请同学们将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如图2.剪开之后,分别求一下这两部分的面积,再求一下它们的和.
【学生活动】分四人小组,合作探究,求出第一块的面积为m(n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).
【教师活动】组织学生继续沿着横的线段剪开,将图形分成四部分,如图3,然后再求这四块长方形的面积.
【学生活动】分四人小组合作学习,求出S1=mn;
S2=nb;
S3=am;
S4=ab,它们的和为S=mn+nb+am+ab.
【教师提问】依据上面的操作,求得的图形面积,探索(m+b)(n+a)应该等于什么?
【学生活动】分四人小组讨论,并交流自己的看法.
(m+b)×
(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b)×
(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.
【师生共识】多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.
字母呈现:
=ma+mb+na+nb.
【例1】计算:
(1)(x+2)(x-3)
(2)(3x-1)(2x+1)
【例2】计算:
(1)(x-3y)(x+7y)
(2)(2x+5y)(3x-2y)
【例3】先化简,再求值:
(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6.
【教师活动】例1~例3,启发学生参与到例题所设置的计算问题中去.
【学生活动】参与其中,领会多项式乘法的运用方法以及注意的问题.
三、随堂练习,巩固新知
课本P148练习第1、2题.
一块长m米,宽n米的玻璃,长宽各裁掉a米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?
多项式与多项式相乘,第一步要先进行整理,在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.
课本P104习题14.1第5、6、7
(2)、9、10题.
14.2.1平方差公式
(二)
2016/11/7
1.知识与技能:
探究平方差公式的应用,熟练地应用于多项式乘法之中.
2.过程与方法:
经历平方差公式的运用过程,体会平方差公式的内涵.
3.情感与价值观:
培养良好的运算能力,以及观察事物的特征的能力,感受到学习数学知识的实际价值.
运用平方差公式进行整式计算.
准确把握运用平方差公式的特征。
1.用平方差公式计算:
(1)(-9x-2y)(-9x+2y)
(2)(-0.5y+0.3x)(0.5y+0.3x)
(3)(8a2b-1)(1+8a2b) (4)20082-2009×
2007
2.计算:
(a+
b)(a-
b)-(3a-2b)(3a+2b)
二、范例学习,巩固深化
【例1】计算:
(1)(
y+2
x)(2
x-
y);
(2)(-
x-0.7a2b)(
x-0.7a2b);
(3)(2a-3b)(2a+3b)(4a2+9b2)(16a4+81b4).
解:
(1)原式=(
x+
y)(
x-
y)=
y2
(2)原式=(-0.7a2b-
x)(-0.7a2b+
x)
=(-0.7a2b)2-(
x)2=0.49a4b2-
x2
(3)原式=(4a2-9b2)(4a2+9b2)(16a4+81b4)
=(16a4-81b4)(16a4+81b4)
=256a8-6561b8
【例2】运用乘法公式计算:
7
×
8
【思路点拨】因为7
可改写为8-
,8
可改写成8+
,这样可用平方差公式计算.
解:
=(8-
)(8+
)=82-(
)2=64-
=63
.
【教师活动】边讲例边引导学生学会应用平方差公式.
【学生活动】参与到例1~2的学习中去.
三、课堂演练,拓展思维
【演练题1】想一想:
(1)计算下列各组算式,并观察它们的共同特征.
(2)从以上的过程中,你
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 上册 第十四 教案