汽车设计论文Word文档格式.docx
- 文档编号:20719550
- 上传时间:2023-01-25
- 格式:DOCX
- 页数:7
- 大小:377.92KB
汽车设计论文Word文档格式.docx
《汽车设计论文Word文档格式.docx》由会员分享,可在线阅读,更多相关《汽车设计论文Word文档格式.docx(7页珍藏版)》请在冰豆网上搜索。
成绩
2012年5月30日
车辆防疲劳驾驶智能转向盘及其监控
摘要:
该转向盘以嵌入式系统为核心,利用GPS数据变化判定车辆驻、行状态,以控制持续驾驶时间的计算周期,利用变压器式角位移传感器采集转向盘转角电压变化,采用电压波模式识别判断疲劳状态,并结合持续驾驶时间
参量对疲劳驾驶进行预警。
关键词:
智能交通;
汽车电子;
疲劳驾驶;
转向盘;
模式识别
绪论
国外对于防疲劳驾驶技术正在研究中,并开发出了一些产品,但需要改装车辆或重新设计,且价格高昂,目前已经有部分高级轿车在应用。
如美国AttentionTechnologles公司推出的DriverFatigueMonitor(DD850)通过红外摄像头采集驾驶员眼部信息,用PERCLOS作为疲劳报警指标,可直接安装在仪表盘上,但只有晚上才有效,且眼部信息采集误差极大,对于眼睛很小的人或戴墨镜的驾驶员几乎不起作用;
美国DigitalInstallations开发的S.A.M.疲劳报警装置利用置于转向盘下方的磁性条检测转向盘转角,如果一段时间内驾驶员没有对转向盘进行任何修正操作,则系统推断驾驶员进入疲劳状态,并触发报警。
但如果在蛇形路、连续弯道、盘山路、环形路中误报,则非常严重。
国内对驾驶员疲劳状态监测技术的研究起步较晚,相关研究主要在大学等研究机构进行。
相关领域的研究主要集中在基于视频信号的驾驶员眼部生理特征的研究方面,且目前各种算法在识别精度、可靠性、实时性等基础性能方面尚存在问题。
本文利用转向盘航向修正与疲劳驾驶的密切关系,设计了一款基于转向盘转角电压波模式识别的车辆防疲劳驾驶智能转向盘。
1技术原理
1.1模式识别技术
计算机模式识别在20世纪60年代初迅速发展并成为一门新学科,它是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法,对形状、模式、曲线、数字、字符格式和图形自动完成识别的过程。
模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,前者是对样本进行特征选择,寻找分类的规律,后者是根据分类规律对未知样本集进行分类和识别。
广义的模式识别属计算机科学中智能模拟的研究范畴,内容非常广泛,包括声波和语言识别、文字识别、指纹识别、声纳信号和地震信号分析、照片图片分析、化学模式识别、脑电波及心电图等波形识别等。
计算机模式识别实现了部分脑力劳动自动化。
本设计运用模式识别技术进行转向盘转角电压波模式识别,用于驾驶员疲劳驾驶检测,是防疲劳驾驶功能的核心技术,也是仪器智能性的最高体现。
1.2转向盘航向修正与疲劳驾驶的关系
发生疲劳驾驶时,驾驶员进入大脑缺氧的瞌睡状态,对转向盘的操作会出现符合一定规律的忽左忽右的现象。
正常直线驾驶角度变化值小,左右变化频率快,转弯或环行时单向角度变化。
当疲劳驾驶时,角度变化增大,左右变化频率减慢,呈规律性。
驾驶实践和实验室研究均证明转向盘航向修正特征与疲劳驾驶有非常好的相关性,本设计即采用了转向盘转角特征和疲劳驾驶的相关性。
系统利用内置变压器式角位移传感器采集航向修正时转向盘转角产生的电压变化,运用模式识别技术建立电压变化波形特征库,当疲劳驾驶时,电压波将不同于平常,变得迟钝而突兀,经与正常驾驶特征比对可判定疲劳驾驶的产生。
图1是同一测试者在正常驾驶和疲劳驾驶时的转向盘转角电压波形对比。
转向盘相对静止状态时的电压波动幅度是指车辆运动过程中转向盘的静止不是绝对静止,也有极小的转动。
如图1所示,正常直线驾驶时,驾驶员及时反复修正航向,输出电压较规律,电压波形为类似正弦波;
驾驶员疲劳驾驶时,对航向修正不及时,转向盘时而处于相对静止状态,时而被操纵修正航向,出现不规律且突兀的波形。
1.3转向盘转角电压波的模式识别
转向盘转角电压波模式识别包括以下3个步骤。
第1步:
提取转向盘转角电压波形特征。
首先需要从识别对象中提取与转向盘转角电压波有关的特征,并度量这些特征。
设X1,X2,…,Xn分别为每个特征的度量值,于是每个识别对象x就对应一个向量(X1,X2,…,Xn),这一步是识别的关键,特征提取不合理,会影响识别效果。
第2步:
建立标准类型的隶属函数,标准类型通常是正常转向盘操作状态,U={(X1,X2,…,Xn)的模糊集,Xi是识别对象的第i个特征。
第3步:
建立识别判决准则,确定某些归属原则,以判定识别对象属于哪一个标准类型。
本设计判决准则为择近原则,即所有可择近归属的电压波形均为正常驾驶,无法归属的例外属于疲劳驾驶或非正常驾驶。
本设计处理模型如下。
正常驾驶按平面行驶轨迹可分为4个标准类型:
直线驾驶(A1)、环形路驾驶(A2)、蛇形路驾驶(A3)、独立转弯(A4)。
转角电压波模式识别函数为F(X),A1、A2、A3、A4∈F(X),B∈F(X)为待识别对象,N为F(X)上的贴近度,若N(Ai,B)=max{N(Ak,B)|k=1,2,3,4},则认为B与Ai最贴近,判定B属于Ai一类。
2原型机设计与技术实现
2.1原型机设计
本文设计的车辆防疲劳驾驶智能转向盘组成包括嵌入式系统、GPS模块、存储器、蜂鸣报警器(含继电器)、变压器式角位移传感器、供电系统(电力来自车载蓄电池)、转向盘壳体、报警器中断按键(位于壳体上)、转向盘骨架、集成电路板。
图2是防疲劳驾驶智能转向盘原型机原理图。
嵌入式系统以嵌入式微处理器为核心,应用程序和相关算法固化在内存芯片中,通过集成电路与GPS模块、蜂鸣报警器、变压器式角位移传感器、供电系统、报警器中断按键连接,接收GPS、变压器式角位移传感器、报警器中断按键的信息,并发送控制信号给蜂鸣报警器。
存储器为嵌入式系统内存,是数据储存中心,用以存放应用程序、实时和历史数据,在需要时进程与数据将被调入嵌入式微处理器CACHE。
GPS模块通过集成电路与嵌入式微处理器和供电系统连接,接收卫星定位数据并将格式数据(含经度、纬度、日期、时间、速度、方位角等)不断传送给嵌入式微处理器。
蜂鸣报警器(含继电器)通过集成电路与嵌入式微处理器和供电系统连接,接收嵌入式系统的控制指令发出报警鸣叫。
变压器式角位移传感器通过连接电路与集成电路板之嵌入式微处理器、供电系统连接,将采集到的转向盘转角输出电压信号和变化波形传送给嵌入式系统,嵌入式系统利用模式识别技术和算法进行信息处理和信号检测,判定驾驶员疲劳状态,当达到设定值则向蜂鸣报警器发出报警控制信号。
供电系统通过输电电路与集成电路板连接,通过集成电路板与嵌入式微处理器、存储器、GPS模块、蜂鸣警报器、变压器式角位移传感器连接起来,提供所需电力。
转向盘壳体为智能转向盘外壳,报警器中断按键位于外壳上,通过连接电路和集成电路板上的嵌入式微处理器、供电系统连接。
按压报警器中断按键则继电器断开,蜂鸣报警器停止鸣叫。
集成电路板承载嵌入式微处理器、存储器、GPS模块、变压器式角位移传感器、蜂鸣报警器和其它辅助电气元件,通过印刷电路与各部件连为一体,嵌入到转向盘内部。
2.2智能转向盘疲劳驾驶预警技术实现
当车辆起动,转向盘上电,防疲劳驾驶警示程序启动。
变压器式角位移传感器采集转向盘转角电压变化,将此信息传送给嵌入式微处理器。
嵌入式微处理器利用模式识别技术,通过相应算法对电压变化数据进行特征提取、分类并登记特征在库。
从变压器式角位移传感器获得的电压变化数据不断写入处理器内存,经相应的算法处理与历史数据库中的特征库标准类型特征进行比对,并将处理结果存入实时数据库。
从GPS模块获得的坐标、速度信息不断写入处理器内存,存入实时数据库。
如果连续一定时间坐标无变化或速度为零,则嵌入式系统判定车辆处于停泊状态,当停泊状态被打破,则嵌入式微处理器开始计时,记录连续驾驶时间,并将计时信息不断写入实时数据库。
当转向盘监控转角电压波特征比对不能归属于标准类型特征函数,且被记录的连续驾驶时间达到或超过设定值,则系统判定驾驶员疲劳驾驶,处理器控制继电器接通蜂鸣报警器电路,报警器鸣叫。
驾驶员可人工按下报警器中断按钮,停止鸣叫并停车休息。
若停止鸣叫后驾驶员不停车休息,只要转向盘监控转角电压波特征比对不能归属于标准类型特征函数,则系统判定驾驶员疲劳驾驶,处理器再次控制继电器接通蜂鸣报警器电路,报警器鸣叫。
驾驶员停车休息后系统进入新一轮防疲劳驾驶程序。
3智能转向盘疲劳驾驶监控与预警数据流程和算法
根据驾驶员对转向盘操作情况,转向盘产生转角输出,变压器式角位移传感器采集到转向盘转角电压波变化状态模拟数据,经降噪、滤波、放大等信号处理后,进行模数转换成电压数字格式,通过与嵌入式系统的输入输出接口传送给嵌入式微处理器,处理器调用防疲劳驾驶程序,对捕获的转向盘转角电压变化进行时间窗电压波的分离与检测,即模式识别。
程序调用模式识别算法对获得的转向盘转角电压波数据进行特征值计算并提取特征值,提取的特征登记到驾驶特征库并进行分类。
每次提取的分类特征与特征库中的设定值进行比对,比对结果存入实时数据库等待决策。
GPS不断从卫星获得坐标、速度数据,并输入嵌入式系统,处理器根据相应的算法记录连续驾驶时间并写入实时数据库等待决策。
图3是转向盘转角电压波模式识别并结合持续驾驶时间参数检测数据流程图,图4是智能转向盘疲劳驾驶预警算法设计要点。
4结语
本文设计思想来源于人工智能对于疲劳驾驶监测复杂程度的有效性,目前为国内外第一款基于模式识别的智能化车辆防疲劳驾驶转向盘设计。
本设计采用转向盘作为载体,使之成为车辆的一个部件,在不添加任何额外设施的情况下具备疲劳驾驶主动安全监控功能,突破了国内基于视频信号的驾驶员眼部生理特征的研究范畴。
基于转向盘转角电压波模式识别并结合持续驾驶时间参数检测的防疲劳驾驶技术,填补了国内外防疲劳驾驶技术空白
参考文献:
[1]黎亚平,周杰,黄磊.国内外驾驶疲劳状态检测技术的现状与发展[Z].南京:
中国单片机公共实验室南京研发中心,2009.
[2]YoshihiroTakei,YoshimiFurukawa.EstimateofDriver’s
FatigueThroughSteeringMotion[Z].2005IEEEInternational
ConferenceonSystems,ManandCybernetics,2005,
(2):
1765-1770.
[3]LalS.K.L.,CraigA.Driverfatigue:
Electroencephalography
andpsychologicalassessment[J].Psychophysiology,2006,(39):
313-321.
[4]路军,王立颖.一种基于模式识别的车辆防疲劳驾驶智能方向盘[P].中华人民共和国国家知识产权局发明专利申请公开说明书,专利公报26卷52号,2011-01.
【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】
感谢您的支持与配合,我们会努力把内容做得更好!
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 汽车 设计 论文