数字信号处理实验四Word文档格式.docx
- 文档编号:20689097
- 上传时间:2023-01-25
- 格式:DOCX
- 页数:14
- 大小:348.42KB
数字信号处理实验四Word文档格式.docx
《数字信号处理实验四Word文档格式.docx》由会员分享,可在线阅读,更多相关《数字信号处理实验四Word文档格式.docx(14页珍藏版)》请在冰豆网上搜索。
在MATLAB中可使用向量a和向量b分别保存分母多项式和分子多项式的系数:
这些系数均从z0按z的降幂排列。
2.离散系统的系统函数零极点分析
离散LTI系统的系统函数H(z)可以表示为零极点形式:
使用MATLAB提供的roots函数计算离散系统的零极点;
使用zplane函数绘制离散系统的零极点分布图。
注意:
在利用这些函数时,要求H(z)的分子多项式和分母多项式的系数的个数相等,若不等则需要补零。
3.离散系统的频率响应
当离散因果LTI系统的系统函数H(z)的极点全部位于z平面单位圆内时,系统的频率响应可由H(z)求出,即
[H,w]=freqz(b,a,n):
计算系统的n点频率响应H,w为频率点向量。
H=freqz(b,a,w):
计算系统在指定频率点向量w上的频响;
freqz(b,a):
绘制频率响应曲线。
其中:
b和a分别为系统函数H(z)的分子分母系数矩阵;
4.利用DTFT和DFT确定离散系统的特性
在很多情况下,需要根据LTI系统的输入和输出对系统进行辨识,即通过测量系统在已知输入x[k]激励下的响应y[k]来确定系统的特性。
若系统的脉冲响应为h[k],由于存在y[k]=x[k]*h[k],因而可在时域通过解卷积方法求解h[k]。
在实际应用中,进行信号解卷积比较困难。
因此,通常从频域来分析系统,这样就可以将时域的卷积转变为频域的乘积,从而通过分析系统输入序列和输出序列的频率特性来确定系统的频率特性,再由得到系统的脉冲响应h[k]。
若该LTI系统输入x[k]的DTFT为,系统输出y[k]的DTFT为,则系统的频率特性可表示为:
有限长序列的DTFT可以利用FFT计算出其在区间内的N个等间隔频率点上的样点值:
X=fft(x,N);
Y=fft(y,N);
再利用H=Y./X和h=ifft(H,N)
可以得到系统的单位脉冲响应h[k]。
三、实验内容
1.已知某LTI系统的差分方程为:
(1)初始状态,输入计算系统的完全响应。
(2)当以下三个信号分别通过系统时,分别计算离散系统的
零状态响应:
(3)该系统具有什么特性?
(1)
N=100;
b=[0.0675,0.1349,0.0675];
a=[1,-1.143,0.412];
x=ones(1,N);
zi=filtic(b,a,[1,2]);
y=filter(b,a,x,zi);
N=100;
y=filter(b,a,x,zi)
y=
Columns1through6
0.38650.23220.37600.60410.80540.9416
Columns7through12
1.01431.04131.04221.03221.02021.0108
Columns13through18
1.00491.00201.00121.00151.00211.0027
Columns19through24
1.00311.00331.00341.00351.00341.0034
Columns25through30
1.00341.00341.00331.00331.00331.003
Columns31through36
1.00331.00331.00331.00331.00331.0033
Columns37through42
Columns43through48
Columns49through54
Columns55through60
Columns61through66
Columns67through72
Columns73through78
Columns79through84
Columns85through90
Columns91through96
Columns97through100
1.00331.00331.00331.0033
k=[0,0.001,100];
x=cos(pi/10*k);
y=filter(b,a,x)
y=0.06750.27960.5616
>
b=[0.0675,0.1349,0.0675];
a=[1,-1.143,0.412];
x=cos(pi/5*k);
0.06750.27960.5616
x=cos(7*pi/10*k);
0.06750.27960.5616
2.已知某因果LTI系统的系统函数为:
(1)计算系统的单位脉冲响应。
(2)当信号
通过系统时,计算系统的零状态响应。
a=[1,-1.035,0.8264,-0.2605,0.04033];
b=[0.03571,0.1428,0.2143,0.1428,0.03571];
y=impz(b,a,N);
stem(y)
xlabel('
k'
);
title('
h[k]'
)
(2)>
u=ones(1,N);
x=u+cos(pi/4*N)+cos(pi/2*N);
结果:
0.03570.21550.58630.97371.14921.1002
0.99030.94720.97351.00981.01871.0066
0.99510.99400.99891.00241.00211.0002
0.99930.99961.00021.00051.00031.0001
1.00001.00011.00021.00021.00021.0001
1.00011.00021.00021.00021.00021.0002
1.00021.00021.00021.00021.00021.0002
Columns73through78
1.00021.00021.00021.0002
3.已知LTI系统的输入输出序列分别为
(1)利用系统辨识原理从频域分别求解系统的单位脉冲响应。
(2)利用解析方法确定,并求出系统的单位脉冲响应。
比较解析方法与系统辨识方法得到的系统单位脉冲响应,分析误差原因。
(1)N=10;
(2)k=1:
100;
K=0:
N-1;
x1=(1/2).^k;
aa=[1,-0.25];
y1=(1/4).*(1/2).^k+(1/4).^k;
ab=[5/4,-7/16];
X1=fft(x1);
Y1=fft(y1);
ba=[1];
bb=[1,-1];
H1=Y1/X1;
ay=impz(ab,aa,N);
H1=ifft(H1)
subplot(2,1,1);
x2=(1/4).^k;
stem(ay);
by=impz(bb,ba,N);
y2=(1/4).^k-(1/4).^(k-1);
subplot(2,1,2);
X2=fft(x2);
Y2=fft(y2);
stem(by);
H2=Y2/X2;
h2=ifft(H2)
4.已知某离散系统的输入输出序列。
输入序列:
2,0.8333,0.3611,0.162,0.0748,0.0354,0.017,0.0083,0.0041,0.002,0.001,0.0005,0.0002,0.0001,0.0001,后面的数值均趋于0;
输出序列:
0.0056,-0.0259,0.073,-0.1593,0.297,
-0.4974,0.7711,-1.1267,1.5702,-2.1037,2.724,-3.4207,4.174,-4.9528,5.7117,-6.3889,6.9034,-7.1528,7.012,-6.3322,4.9416,-2.648,-0.7564,5.4872,-11.7557,19.7533,-29.6298,41.4666,-55.2433,70.7979,-87.7810
(1)绘出输入输出信号的波形。
(2)计算该系统的频率响应,并绘出其幅频特性。
(3)计算该系统的单位脉冲响应,并绘出其波形。
(1)x=[2,0.8333,0.3611,0.162,0.0748,0.0354,0.017,0.0083,0.0041,0.002,0.001,0.0005,0.0002,0.0001,0.0001];
y=[0.0056,-0.0259,0.073,-0.1593,0.297,-0.4974,0.7711,-1.1267,1.5702,-2.1037,2.724,-3.4207,4.174,-4.9528,5.7117,-6.3889,6.9034,-7.1528,7.012,-6.3322,4.9416,-2.648,-0.7564,5.4872,-11.7557,19.7533,-29.6298,41.4666,-55.2433,70.7979,-87.7810];
stem(x);
stem(y);
(2)x=[2,0.8333,0.3611,0.162,0.0748,0.0354,0.017,0.0083,0.0041,0.002,0.001,0.0005,0.0002,0.0001,0.0001];
X=fft(x,256);
Y=fft(y,256);
H=Y./X;
H0=abs(H);
plot(H0);
(3)h=ifft(H);
plot(h0);
5.利用loadmtlb命令读入一段语音信号得到序列,然后在该段语音信号中加入500Hz的正弦型干扰信号得到信号,利用FFT分析其频谱。
(1)下列数字滤波器能够滤除信号中500Hz正弦型干扰信号。
利用zplane命令做出其零极点分布图,利用命令分析该滤波器的幅频特性和相频特性,比较零极点分布与滤波器频率特性的关系。
(2)利用该数字滤波器滤除信号中的噪声,利用FFT观察其频谱,利用sound函数播放处理前后的信号,比较处理前后的效果。
(1)a=[1,-3.594,5.17,-3.494,0.945];
b=[0.6877,-2.509,3.664,-2.509,0.6877];
z=roots(b);
p=roots(a);
subplot(2,2,1);
zplane(b,a);
[H,w]=freqz(b,a);
subplot(2,2,2);
plot(w,abs(H));
w(rad)'
ylabel('
H0'
·
ù
Æ
µ
Ì
Ø
Ð
Ô
'
subplot(2,2,3);
plot(w,angle(H));
'
Ï
à
(2)loadmtlb
N=150;
x=mtlb(1:
N);
k=1:
N;
subplot(2,3,4);
plot(k,x);
´
¦
À
í
Ç
°
X=fft(x,150);
h=ifft(H);
H=fft(H,150);
Y=X.*H;
y=ifft(Y);
subplot(2,3,5);
plot((1:
N),y);
º
ó
1.系统函数的零极点对系统频率特性有何影响?
答:
系统零点越接近1,则幅频响应的波谷越低,即滤波器的滤波衰减最低点越低;
系统极点越接近1,则幅频响应的波峰越高,即滤波器的滤波通带最高点越高。
极点主要影响频率响应的峰值,极点愈靠近单位圆,峰值愈尖锐;
零点主要影响频率特性的谷值,零点愈靠近单位圆,谷值愈深,当零点在单位圆上时,频率特性为零,一个传递函数有几个极点幅度响应就有几个峰值,对应出现一些谷值。
2.对于因果稳定实系数的低通、高通、带通、带阻数字滤波器,极点分布有何特点?
答:
因为是因果稳定系统,所以极点都在单位圆内。
3.离散系统的系统函数的零极点对系统脉冲响应有何影响?
系统函数的极点位置决定序列包络的变化趋势和变化频率,极点的半径决定了序列包络的变化趋势,而极点的幅角决定序列包络的变化频率,而零点位置只影响冲激响应的幅度大小和相位。
4.若某因果系统不稳定,有哪些主要措施可使之稳定?
改变参数,让极点在单位圆内。
5.从频域利用DFT确定离散LTI系统的特性,一般会产生哪些误差,如何改善?
频谱混叠,对于带限连续信号,只要提高抽样频率使之满足时域抽样定理;
对于非带限信号,更具实际情况对其进行低通滤波,使之成为带限信号;
频谱泄露,时域加窗使之成为有限长序列;
栅栏现象,在序列后补零,构成新序列后再求频谱
6.若使用DFT对连续LTI系统进行辨识,需要解决哪些问题?
频谱混叠的问题,对于带限连续信号,要提高抽样频率使之满足时域抽样定理;
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字信号 处理 实验