土地利用覆盖变化信息提取Word下载.docx
- 文档编号:20663601
- 上传时间:2023-01-24
- 格式:DOCX
- 页数:19
- 大小:100.72KB
土地利用覆盖变化信息提取Word下载.docx
《土地利用覆盖变化信息提取Word下载.docx》由会员分享,可在线阅读,更多相关《土地利用覆盖变化信息提取Word下载.docx(19页珍藏版)》请在冰豆网上搜索。
4.2
图像预处理
数据预处理部分主要包括:
对遥感影像进行大气校正、几何纠正、以及对研究区进行边界裁剪和图像增强。
主要工作流程如下(图4-2):
图4-2数据预处理主要技术流程
具体方法如下:
1)大气校正。
本文的大气纠正在PCI软件的ATCOR2模块中完成,以去除薄云和大气对影像光谱的影响,尤其是96年的图像,经过大气校正后,图像质量得到了很大提高。
2)几何纠正。
影像几何纠正就是将所研究影像纳入到一个地面坐标系中,方法是利用地面控制点对各种因素引起的遥感影像的几何畸变进行纠正,以便确定影像上每个像元在地面的坐标,其过程就是把目标由一个空间向另一个空间转换的过程。
3)边界裁剪。
对遥感影像进行上述处理后,利用所给的县行政边界矢量图边界对影像进行裁剪,分别得到1988年和1996年的TM图像以及2003年的SPOT和ETM研究区影像。
4)图像增强。
本文采用最佳指数因子分析方法对3幅多光谱影像三波段组合方案进行评价最后得出最佳波段组合。
最佳指数因子的计算公式为:
(2-1)
式中,
为i波段图像的亮度标准差,其值越大,说明数据的离散度越大,所包含的信息量越大,可分离性越高;
为三波段中任意两波段之间的相关系数,其值越小,表明图像数据独立性越高,信息的冗余度越小。
OIF越大,组合图像的信息量越大,组合方案越佳。
利用最佳指数因子分析方法计算1988、1996、2003年三幅多光谱影像的三波段组合值如下表(表4-3):
表4-3影像最佳波段组合信息含量表
影像
OIF组合方案
421
432
532
543
752
743
754
88年TM
26.338
29.182
25.521
33.605
27.793
33.983
33.910
96年TM
32.154
34.864
16.845
36.025
16.089
36.163
25.598
03年ETM
16.240
19.483
21.121
23.240
20.880
22.592
20.427
从上表中可得知,1988年和1996年两幅TM影像的743组合值都是最大的,2003年的ETM543组合值最大,743次之,整个市的土地利用格局以耕地和林地等农用地为主,整个地区有较高的植被覆盖,而743组合更接近植被的真彩色,有利于植被的分类,所以三幅影像都采用743组合方案参与分类。
5
土地利用/土地覆被分类
5.1
监督分类法
此法的关键在于训练区的选择。
训练区的选取应与分类地区的特点和分类系统相适应。
对训练区的统计特征应进行详细的分析,以选择最有效的参数变量(谱段)参与后续的分类。
此外,应对训练区特征指标的外延性进行评估(英时,2003)。
监督分类法中具体方法包括最小距离分类法、多级切割分类法、特征曲线窗口法和最大似然分类法,其中最大似然分类法用的最多。
最大似然分类法(maximumlikelihoodclassifier)在多类别分类时,常常采用统计学方法建立起一个判别函数集,然后根据这个判别函数集计算各待分像元的归属概率。
这里,归属概率是指:
对于待分像元x,它从属于分类类别
的(后验)概率。
设从类别
中观测到
的条件概率为
,则归属概率
可表示为如下形式的判别函数:
(3-1)
式中,
为待分像元,
为类别
的先验概率,它可以通过训练区来决定。
此外,由于上式中分母和类别无关,在类别间比较的时候可以忽略。
1)
训练样区的选取与纯化
本文中采用的方法为试分类混淆矩阵分析法和J-M距离法来对所选取的训练样本纯度进行评价,通过对所得混淆矩阵进行分析,即可得到训练样本占原来各类个体总数的百分比,以确定其分类的正确率,从而也检验了训练的纯度。
在ENVI4.2中对纯化前和纯化后的训练样本区进行了分类,并以训练样本自身对分类结果进行精度检验,得到混淆矩阵。
纯化前训练样本的训练区分类混淆矩阵显示:
OverallAccuracy=92.0142%
,KappaCoefficient=0.9165。
对训练样本进行纯化后,训练样本的训练区分类混淆矩阵显示:
OverallAccuracy=96.3045%
,KappaCoefficient=0.9500。
在ENVI4.2中未纯化前和纯化后的训练样本区进行统计其J-M距离,结果显示:
纯化前训练样本的J-M距离,最小的是园地和林地之间的J-M距离,只有1.3208。
另外园地和耕地之间、居民点及工矿用地和未利用地之间的J-M距离也比较小,但均大于1.5。
经纯化以后,只有园地和林地之间的J-M距离仍然小于1.5。
其他均在1.8以上。
训练样本之间的可分性明显增大。
2)
分类精度及结果分析
在对影像做了图像预处理后,根据影像的光谱特征,选择适当的训练样区,将土地利用分为若干不同的类别。
结合研究区的实际情况,根据目视判读选择训练样本,采用最大似然分类法(MaximumLikelihoodClassification,MLC),将市2003年的土地利用分为5类,即耕地、园地、林地、居民点及工矿用地、水域。
(a)1988年
(b)1996年
(c)2003年
图5-1
市最大似然法土地利用/土地覆被分类图
利用上面确定的方法和已有的样本数据对研究区分类后图像进行精度估计,得到最终最大似然法的误差矩阵和各项统计指标(以2003年为例)。
表5-1
最大似然法分类精度矩阵
类别
未分类
耕地
园地
林地
居民点及工矿用地
水体
未利用地
总计
65
8
73
3
14
19
36
94
97
2
16
10
未利
用地
4
12
24
合计
69
23
119
22
256
表
5-2
最大似然法分类精度评价(%)
参考总计
分类总计
正确分类数
生产精度
用户精度
---
94.20%
89.04%
60.87%
38.89%
78.99%
96.91%
63.64%
87.50%
100.00%
50.00%
209
总精度=209/256=81.64%
表5-1和5-2显示了在最大似然分类中,园地和未利用地的分类精度比较低,分别为:
38.89%和50.00%,这是因为园地、耕地、林地之间和未利用地和居民点及工矿用地之间的光谱特征很多比较相似(图5-2),从而导致误判。
尤其是林地和园地错分现象比较多,36个园地样点中,有19个被误分为林地,3个被误分为耕地。
5.2
决策树分类
1)典型地物光谱分析
为了获取研究区各种地物类型光谱特征知识,对研究区典型地物类型进行采样并加以统计,统计结果见表5-3(以03年为例)。
其中03年耕地按耕地l(主要为水田)和耕地2(主要为旱地)两类采样,水体分为水体1(河流)和水体2(水库和坑塘水面)两类采样。
88年图像上由于存在大量山体阴影,因此阴影也列为单独一类进行采样。
表5-303年典型地物样本亮度值统计表
地物
波段
耕地2
水体1
水体2
B1
最小值
4.00
14.00
8.00
0.00
9.00
5.00
1.00
最大值
40.00
41.00
29.00
24.00
90.00
47.00
35.00
101.00
均值
21.06
24.22
15.76
7.56
28.75
31.25
14.25
36.07
均方差
4.03
3.58
2.88
2.85
5.93
4.29
4.49
9.45
B2
10.00
21.00
13.00
16.00
59.00
62.00
32.00
79.00
55.00
118.00
35.87
35.57
24.21
15.29
38.35
48.38
19.87
57.00
5.54
4.68
4.06
3.52
7.38
8.28
7.71
12.52
B3
18.00
11.00
6.00
76.00
67.00
117.00
81.00
63.00
138.00
35.28
38.36
23.38
13.52
45.31
46.64
15.37
72.54
6.67
6.13
5.79
3.56
9.19
9.43
7.99
18.70
B4
25.00
19.00
22.00
17.00
109.00
72.00
82.00
65.00
95.00
71.20
42.12
46.43
41.88
36.78
13.18
5.40
64.83
10.28
8.47
6.08
9.52
7.70
8.43
5.75
10.54
B5
30.00
20.00
26.00
110.00
102.00
92.00
172.00
99.00
167.00
75.43
47.58
60.50
47.75
67.18
14.43
10.41
106.08
9.26
17.83
9.77
11.62
12.11
11.34
7.21
18.14
B7
7.00
12.00
23.00
97.00
89.00
80.00
163.00
75.00
68.00
155.00
47.24
31.01
35.74
24.51
60.71
10.59
7.52
86.17
9.46
13.23
8.59
7.13
11.64
8.38
5.26
16.75
通过03年典型地物样本亮度值统计可以得到03年典型地物样本波谱响应曲线:
图5-2
03年典型地物样本波谱响应曲线
2)决策树的构建
对于03年图像:
由于水体和阴影的低反射率,尤其是在长波部分更明显。
因此可以利用TM4/TM3的比值来区分大部分林地。
然后通过缨帽变换的亮度分量可以区分大部分耕地,剩下的耕地、园地和林地可以通过地学辅助知识如高程和坡度信息来加以区分。
最后通过分析得到03年的分类决策树:
图
4-5
03年分类决策树
依据同样的原理,通过分析分别得到88年和96年的分类决策树:
图5-6
96年分类决策树
5-7
88年分类决策树
3)分类精度及结果分析
通过决策树分类以及分类后的合并处理最后得到三个时期的土地利用/覆被分类图:
5-8
市决策树分类法土地利用/土地覆盖分类图
通过分层采样和已有的样本数据对研究区分类后图像进行精度估计,得到最终决策树的误差矩阵和各项统计指标(以2003年为例)。
表5-6
决策树分类精度矩阵
77
83
11
6
105
114
21
13
86
108
9
决策树分类精度评定(%)
89.53%
92.77%
68.75%
91.67%
97.22%
92.11%
91.30%
92.31%
88.89%
80.00%
234
总精度=209/256=91.41%
表5-6和5-7显示了决策树分类中,园地和未利用地的分类精度明显有所提高,分别为:
91.67%和80.00%,林地和园地错分现象明显减少,12个园地样点中,只有1个被误分为耕地,同样,在10个未利用地样点中,只有2个样点被误分为居民点及工矿用地。
这是因为在决策树分类过程中,充分利用了地物的各种特征信息,除了利用园地、耕地、林地之间和未利用地和居民点及工矿用地之间的光谱特征之外,还有效使用了其他的特征信息,如纹理信息,通过NDVI可以很好的初步分离耕地、园地和林地,利用缨帽变换的亮度、湿度和绿度信息可以很好的区分未利用地和居民点及工矿用地,在初步分类结果的基础上,通过GIS辅助数据,像高程和坡度等信息,可以进一步分离混分部分,使分类精度大大提高。
5.3
两种分类精度评定及结果分析
对两种分类方法的分类结果分别进行精度评定最后得到了两种分类方法三个时期总体分类精度:
表5-8
两种分类方法的分类精度比较
年份
方法
最大似然法
决策树分类法
总体精度
Kappa系数
1988年
84.7%
0.7846
87.89%
0.8288
1996年
76.95%
0.6949
0.8290
2003年
81.64%
0.7461
91.41%
0.8751
从上述表格两种方法分类结果的比较可以看出:
(1)决策树分类方法从整体上优越于最大似然法,而且整体上比较平均,该方法在各单项地物类型的分类精度之间相差比较小,分类结果较为满意,总精度达到了85%以上,均达到最低允许判别精度0.7的要求(LucasIFJ,1994))。
(2)基于知识的决策树分类方法是提高遥感影像土地利用/覆被自动分类精度的有效途径之一,其关键在于知识的获取与规则的创建,只有在对地类光谱特征、几何特征、地类间相互关系、地类变化规律、地学分布规律等知识认真分析的基础上建立合理的规则,通过有效地推理判断才能得到高质量的分类结果。
本研究在对研究区地物分布规律、地物光谱特征分析的基础上所建立的规则用于分类取得了较好的效果,说明其规则的创建是合理而有效的。
6
土地利用/覆被变化分析
6.1
市土地利用类型的数量变化
根据土地利用/覆被遥感图像分类的结果,1988年、1996年和2003年市各类土地利用/覆被类型的面积和比例的变化,如表4-1和4-2所示。
表6-11988年-1996年市土地利用总量变化分析表
土地利用类型
面积/hm2
比例%
面积增加
/hm2
变化率%
103476.24
50.19
67770.72
32.87
-35705.52
-34.51
2442.96
1.19
15425.64
7.48
12982.68
531.43
87942.33
42.65
102268.35
49.6
14326.02
16.29
5617.98
2.72
12702.51
6.16
7084.53
126.10
3111.03
1.51
5589.9
2478.87
79.68
3586.05
1.74
2419.47
1.17
-1166.58
-32.53
206176.59
100
表6-21996年-2003年市土地利用总量变化分析表
72926.73
35.37
5156.01
7.61
8804.25
4.27
-6621.39
-42.92
101124.27
49.05
-1144.08
-1.12
15782.67
7.65
3080.16
24.25
5588.46
2.71
-1.44
-0.03
1950.21
0.95
-469.26
-19.40
6.2
市土地利用类型转换变化
单纯看面积增加或减少,难以反映土地利用的部结构变化。
为揭示各土地利用类型的部转移特征,基于1988年、1996年和2003年市土地利用分类图,利用ArcGIS软件中空间分析模块的叠加功能,分别将每两个时期分类图像叠加,得到土地利用面积转移矩阵(表6-3、表6-4和表6-5)。
表6-31988~1996市土地利用转换矩阵(Unit:
hm2)
动态转移矩阵
1988年合计
水域
61793.37
13575.96
16128.63
8208.45
2044.89
1720.44
P/%
32.57
38.70
19.69
4.91
4.13
100.00
1423.71
438.48
421.38
69.3
19.44
70.65
71.03
21.02
3.46
0.97
2287.62
745.29
84457.8
274.77
115.47
64.08
65.60
21.37
7.88
3.31
1.84
651.24
277.56
3618.36
321.66
97.92
13.88
32.56
16.09
4.90
131.04
68.13
134.4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 土地利用 覆盖 变化 信息 提取