YFSH高三数学第一轮复习学案[不等式与推理证明].doc
- 文档编号:2060192
- 上传时间:2022-10-26
- 格式:DOC
- 页数:58
- 大小:4MB
YFSH高三数学第一轮复习学案[不等式与推理证明].doc
《YFSH高三数学第一轮复习学案[不等式与推理证明].doc》由会员分享,可在线阅读,更多相关《YFSH高三数学第一轮复习学案[不等式与推理证明].doc(58页珍藏版)》请在冰豆网上搜索。
高三数学第一轮复习学案
第六章不等式、推理与证明
【知识特点】
(1)不等式应用十分广泛,是高中数学的主要工具,试题类型多、方法多、概念要求较高,特别是不等式性质的条件与结论,基本不等式的条件等。
(2)不等式的性质本身就是解题的手段和方法,要认真理解和体会不等式性质的条件与结论,并运用它去解题。
(3)一元二次不等式的解法及求解程序框图一定要在理解的基础上掌握,因为求解的程序框图就是求解的一般方法与步骤。
(4)二元一次不等式组与简单的线性规划是解决最优化问题的一个重要手段,但画图时一定要细心,然后求出目标函数的最值。
(5)基本不等式的条件是解题的关键,一定要认真体会,会运用基本不等式来证明或求解问题。
(6)推理与证明贯穿于每一个章节,是对以前所学知识的总结与归纳,概念较多,知识比较系统,逻辑性较强,在高中数学中有着特殊地位。
【重点关注】
不等式、推理与证明的学习应立足基础,重在理解,加强训练,学会建模,培养能力,提高素质,因此在学习中应重点注意以下几点:
(1)学习不等式性质时,要弄清条件与结论,要克服“想当然”和“显然成立”的思维定势,要以比较准则和实数的运算法则为依据解决问题。
(2)解某些不等式时,要与函数的定义域、值域、单调性联系起来,注重数形结合思想,解含参数不等式时要注重分类讨论的思想。
(3)利用基本不等式求最值时,要满足三个条件:
一正,二定,三相等。
(4)要强化不等式的应用意识,同时要注意到不等式与函数和方程的对比与联系,充分利用函数方程思想、数形结合思想处理不等式问题。
(5)利用线性规划解决实际问题,充分利用数形结合思想,会达到事半功倍的效果,因此力求画图标准。
(6)深刻理解合情推理的含义,归纳解决这类问题的规律和方法,掌握分析法、综合法、反证法的证明过程和解题特点。
(7)合情推理中主要包括类比推理与归纳推理两种推理模式,类比、归纳的数学思想是在进行问题探讨、研究时常见的思想方法。
(8)数学归纳法是证明数列、等式、不等式的有效方法,证明问题时要注意充分利用归纳假设,同时注意项数的变化,在证明不等问题时,注意放缩、作差等方法的应用。
【地位和作用】
不等式通常会和函数,方程结合起来考查学生的综合能力,一般有一道小的选择或计算及填空出现在高考试题中,学好不等式的证明及计算是很重要的。
涉及不等式的大题有时也会和求函数的最值结合大概可以占到20-30分。
推理与证明主要包括:
合情推理和演绎推理、直接证明与间接证明、数学归纳法(理科)等内容,其中推理中的合情推理、演绎推理几乎涉及数学的方方面面的知识,代表研究性命题的发展趋势,选择题、填空题、解答题都可能涉及到,该部分命题的方向主要会在函数、三角、数列、立体几何、解析几何等方面,在新的高考中都会涉及和渗透,但单独出题的可能性较小;
总得说来,这一章在高考命题上将会呈现以下特点:
1、考查题型以选择题、填空为主,偶以解答题形式出现,但多数是解答题中的一部分,如与数列、函数、解析几何等结合考查,分值约占10%左右,既有中低档题也会有高档题出现;
2、重点考查不等式解法、不等式应用、线性规划以及不等式与其他知识的结合,另在推理与证明中将会重点考查。
合情推理与演绎推理及证明方法,偶尔对数学归纳法的考查,注重知识交汇处的命题;
3、预计本章在今后的高考中仍将在不等式的解法、基本不等式应用、线性规划以及推理与证明与其他知识的交汇处命题,更加注重应用与能力的考查。
【章节知识网络】
6.1不等式
【高考目标导航】
一、不等关系与不等式
1、考纲点击
(1)了解现实世界和日常生活中的不等关系;
(2)了解不等式(组)的实际背景;
(3)掌握不等式的性质及应用。
2、热点提示
(1)不等式的性质为考查重点,对于不等关系,常与函数、数列、简易逻辑及实际问题相结合进行综合;
(2)用待定系数法求参数的范围问题是重点,也是难点;
(3)题型以选择题和填空题为主,主要在与其他知识点交汇处命题。
二、一元二次不等式及其解法
1、考纲点击
(1)会从实际情境中抽象出一元二次不等式模型;
(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;
(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。
2、热点提示
(1)以考查一元二次不等式的解法为主,兼顾二次方程的判别式、根的存在性等知识;
(2)以集合为载体,考查不等式的解法及集合的运算;
(3)以函数、数列、解析几何为载体,以二次不等式的解法为手段,考查求参数的范围问题;
(4)以选择、填空题为主,偶尔穿插于解答题中考查。
三、二元一次不等式(组)与简单的线性规划问题
1、考纲点击
(1)会从实际情境中抽象出二元一次不等式组;
(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;
(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
2、热点提示
(1)重点考查线性目标函数的最值,兼顾考查代数式的几何意义(如斜率、距离、面积等);
(2)多在选择、填空题中出现,有时会在解答题中出现,常与实际问题相联系,列出线性约束条件,求出最优解。
四、基本不等式
1、考纲点击
(1)了解基本不等式的证明过程;
(2)会用基本不等式解决简单的最大(小)值问题。
2、热点提示
(1)以考查基本不等式的应用为重点,兼顾考查代数式变形、化简能力,注意“一正、二定、三相等”的条件;
(2)考查方式灵活,可出选择题、填空题,也可出以函数为载体的解答题;
(3)以不等式的证明为载体,与其他知识结合在一起来考查基本不等式,证明不会太难。
但题型多样,涉及面广。
【考纲知识梳理】
一、不等关系与不等式
1、比较两实数大小的方法——求差比较法
;
;
。
2、不等式的基本性质
定理1:
若,则;若,则.即。
注:
把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。
定理2:
若,且,则。
注:
此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数;定理2称不等式的传递性。
定理3:
若,则。
注:
(1)不等式的两边都加上同一个实数,所得不等式与原不等式同向;
(2)定理3的证明相当于比较与的大小,采用的是求差比较法;
(3)定理3的逆命题也成立;
(4)不等式中任何一项改变符号后,可以把它从一边移到另一边。
定理3推论:
若。
注:
(1)推论的证明连续两次运用定理3然后由定理2证出;
(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:
两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)同向不等式:
两个不等号方向相同的不等式;异向不等式:
两个不等号方向相反的不等式。
定理4.如果且,那么;如果且,那么。
推论1:
如果且,那么。
注:
(1)不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;
(2)两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;(3)推论可以推广到任意有限个两边都是正数的同向不等式两边分别相乘。
这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向。
推论2:
如果,那么。
定理5:
如果,那么。
3、不等式的一些常用性质
(1)倒数性质
①
②
③
④
(2)有关分数的性质
若,则
①真分数的性质:
②假分数的性质:
4、基本不等式
定理1:
如果,那么(当且仅当时取“”)。
注:
(1)指出定理适用范围:
;
(2)强调取“”的条件。
定理2:
如果是正数,那么(当且仅当时取“=”)
注:
(1)这个定理适用的范围:
;
(2)我们称的算术平均数,称的几何平均数。
即:
两个正数的算术平均数不小于它们的几何平均数。
二、一元二次不等式及其解法
1、一元二次不等式与相应的一元二次函数及一元二次方程的关系如下表:
判别式
Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数y=ax2+bx+c(a>0)的图象
一元二次方程ax2+bx+c=0(a>0)的根
有两相异实根x1,x2(x1 有两相等实根x1=x2= 没有实数根 ax2+bx+c>0(a>0)的解集 ax2+bx+c<0(a>0)的解集 Φ Φ 注: 当a<0时,可利用不等式的性质将二次项系数化为正数,注意不等号的变化,而后求得方程两根,再利用“大于号取两边,小于号取中间”求解。 2、用程序框图来描述一元二次不等式ax2+bx+c>0(a>0)的求解的算法过程为: 三、二元一次不等式(组)与简单的线性规划问题 1、二元一次不等式(组)表示的平面区域 (1)在平面直角坐标系中,直线将平面内的所有点分成三类: 一类在直线上,另两类分居直线的两侧,其中一侧半平面的点的坐标满足,另一侧的半平面的点的坐标满足; (2)二元一次不等式在平面直角坐标系中表示直线某一侧的平面区域且不含边界,直线作图时边界直线画成虚线,当我们在坐标系中画不等式所表示的平面区域时,此区域应包括边界直线,此时边界直线画成实线。 (3)不等式组表示的平面区域是各个不等式所表示平面点集的交集,因而是各个不等式所表示平面区域的公共部分。 2、线性规划的有关概念 名称 意义 约束条件 由变量x,y组成的不等式组 线性约束条件 由x,y的一次不等式(或方程)组成的不等式组 目标函数 关于x,y的函数解析式,如z=2x+3y 线性目标函数 关于x,y的一次解析式 可行解 满足线性约束条件的解(x,y) 可行域 所有可行解组成的集合 最优解 使目标函数取得最大值或最小值的可行解 线性规划问题 在线性约束条件下求线性目标函数的最大值或最小值问题 注: 最优解必定是可行解,但可行解不一定是最优解,最优解不一定唯一,有时唯一,有时有多个。 四、基本不等式 1、基本不等式 定理1: 如果,那么(当且仅当时取“”)。 注: (1)指出定理适用范围: ; (2)强调取“”的条件。 定理2: 如果是正数,那么(当且仅当时取“=”) 注: (1)这个定理适用的范围: ; (2)我们称的算术平均数,称的几何平均数。 即: 两个正数的算术平均数不小于它们的几何平均数。 2、常用字的几个重要不等式 注: 上述不等式成立的条件是a=b 3、利用基本不等式求最佳问题 已知x>0,y>0,则: (1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值是(简记: 积定和最小); (2)如果和x+y是定值p,那么当且仅当x=y时,xy有最大值是。 (简记: 和定积最大) 4、算术平均值与几何平均值 设a>0,b>0,则a,b的的算术平均值为,几何平均值为,均值不等式可叙述为: 两个正实数的自述平均值大于或等于它们的几何平均值。 【要点名师透析】 一、不等关系与不等式 (一)应用不等式表示不等关系 ※相关链接※ 1、将实际的不等关系写成对应的不等式时,应注意实际问题中关键性的文字语言与对应的数学符号之间的正确转换,这关系到能否正确地用不等式表示出不等关系。 常见的文字语言与数学符号之间的转换关系如下表: 2、注意区分“不等关系”和“不等式”的异同,不等关系强调的是关系,可用表示,不等式则是表现不等关系的式子,对于实际问题中的不等关系可以从“不超过”、“至少”、“至多”等关键词上去把握,并考虑到实际意义。 ※例题解析※ 〖例〗某汽车公司由于发展的需要需购进一批汽车,计划使用不超过1000万元的资金购买单价分别为40万元、90万元的A型汽车和B型汽车。 根据需要,A型汽车至少买5辆,B型汽车至少买6辆,写出满足上述所有不等关系的不等式。 思路解析: 把握关键
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不等式与推理证明 YFSH 数学 第一轮 复习 不等式 推理 证明