CPU芯片测试技术Word文档下载推荐.docx
- 文档编号:20596724
- 上传时间:2023-01-24
- 格式:DOCX
- 页数:34
- 大小:524.70KB
CPU芯片测试技术Word文档下载推荐.docx
《CPU芯片测试技术Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《CPU芯片测试技术Word文档下载推荐.docx(34页珍藏版)》请在冰豆网上搜索。
测试设备介绍…………………………………………………………….28
3.1.1Handler(传送机)介绍……………………………………….28
3.1.2Tester(测试机)介绍………………………………………..29
3.1.3Chiller(温控设备)介绍………………………………….29
测试系统………………………………………………………………….30
3.2.1SUMMITATC(温度控制系统)……………………..30
3.2.2T2000(测试系统)…………………………………………….31
3.2.3其它相关系统……………………………………………..31
第四章测试实例分析
等级测试………………………………………………………………….32
实例分析………………………………………………………………….32
致谢…………………………………………………………………………。
……..42
参考文献…………………………………………………………………………….43
摘要
为什么要测试?
可以通过测试对产品中的带有缺陷的不合格的产品及时筛选出来。
可以通过测试对产品的性能作出优良等级的评定。
可以通过测试对产品,还在工厂中时,随时监控,及时找出存在的问题,解决问题。
可以通过测试对产品,及时监控,把最新动态反馈给工程师,从而不断的改进和完善工艺。
关键字:
测试可靠性中央处理器传送机测试机
Abstract
WhyshouldwetestCanpassthetestproductwithadefectinthestandardfilteroutoftheproductintime.Cantesttheperformanceoftheproducttomakeagoodlevelofassessment.Canpassthetestproduct,isstillatthefactoryatanytimetomonitor,identifyproblemsinatimelymanner,tosolvetheproblem.Canpassthetestproduct,timelymonitoring,thelatestfeedbacktotheengineers,soastocontinuouslyimproveandperfecttheprocess
Keywords:
Test,reliability,CPU(CentralProcessingUnit),Handler,Tester
1.1集成电路的发展
1.1.1世界集成电路的发展
世界集成电路产业结构的变化及其发展历程
自1958年美国德克萨斯仪器公司(TI)发明集成电路(IC)后,随着硅平面技术的发展,二十世纪六十年代先后发明了双极型和MOS型两种重要的集成电路,它标志着由电子管和晶体管制造电子整机的时代发生了量和质的飞跃,创造了一个前所未有的具有极强渗透力和旺盛生命力的新兴产业集成电路产业。
回顾集成电路的发展历程,我们可以看到,自发明集成电路至今40多年以来,"
从电路集成到系统集成"
这句话是对IC产品从小规模集成电路(SSI)到今天特大规模集成电路(ULSI)发展过程的最好总结,即整个集成电路产品的发展经历了从传统的板上系统(System-on-board)到片上系统(System-on-a-chip)的过程。
在这历史过程中,世界IC产业为适应技术的发展和市场的需求,其产业结构经历了三次变革。
第一次变革:
以加工制造为主导的IC产业发展的初级阶段。
70年代,集成电路的主流产品是微处理器、存储器以及标准通用逻辑电路。
这一时期IC制造商(IDM)在IC市场中充当主要角色,IC设计只作为附属部门而存在。
这时的IC设计和半导体工艺密切相关。
IC设计主要以人工为主,CAD系统仅作为数据处理和图形编程之用。
IC产业仅处在以生产为导向的初级阶段。
第二次变革:
Foundry公司与IC设计公司的崛起。
80年代,集成电路的主流产品为微处理器(MPU)、微控制器(MCU)及专用IC(ASIC)。
这时,无生产线的IC设计公司(Fabless)与标准工艺加工线(Foundry)相结合的方式开始成为集成电路产业发展的新模式。
随着微处理器和PC机的广泛应用和普及(特别是在通信、工业控制、消费电子等领域),IC产业已开始进入以客户为导向的阶段。
一方面标准化功能的IC已难以满足整机客户对系统成本、可靠性等要求,同时整机客户则要求不断增加IC的集成度,提高保密性,减小芯片面积使系统的体积缩小,降低成本,提高产品的性能价格比,从而增强产品的竞争力,得到更多的市场份额和更丰厚的利润;
另一方面,由于IC微细加工技术的进步,软件的硬件化已成为可能,为了改善系统的速度和简化程序,故各种硬件结构的ASIC如门阵列、可编程逻辑器件(包括FPGA)、标准单元、全定制电路等应运而生,其比例在整个IC销售额中1982年已占12%;
其三是随着EDA工具(电子设计自动化工具)的发展,PCB设计方法引入IC设计之中,如库的概念、工艺模拟参数及其仿真概念等,设计开始进入抽象化阶段,使设计过程可以独立于生产工艺而存在。
有远见的整机厂商和创业者包括风险投资基金(VC)看到ASIC的市场和发展前景,纷纷开始成立专业设计公司和IC设计部门,一种无生产线的集成电路设计公司(Fabless)或设计部门纷纷建立起来并得到迅速的发展。
同时也带动了标准工艺加工线(Foundry)的崛起。
全球第一个Foundry工厂是1987年成立的台湾积体电路公司,它的创始人张忠谋也被誉为"
晶芯片加工之父"
。
第三次变革:
"
四业分离"
的IC产业
90年代,随着INTERNET的兴起,IC产业跨入以竞争为导向的高级阶段,国际竞争由原来的资源竞争、价格竞争转向人才知识竞争、密集资本竞争。
以DRAM为中心来扩大设备投资的竞争方式已成为过去。
如1990年,美国以Intel为代表,为抗争日本跃居世界半导体榜首之威胁,主动放弃DRAM市场,大搞CPU,对半导体工业作了重大结构调整,又重新夺回了世界半导体霸主地位。
这使人们认识到,越来越庞大的集成电路产业体系并不有利于整个IC产业发展,"
分"
才能精,"
整合"
才成优势。
于是,IC产业结构向高度专业化转化成为一种趋势,开始形成了设计业、制造业、封装业、测试业独立成行的局面,近年来,全球IC产业的发展越来越显示出这种结构的优势。
如台湾IC业正是由于以中小企业为主,比较好地形成了高度分工的产业结构,故自1996年,受亚洲经济危机的波及,全球半导体产业出现生产过剩、效益下滑,而IC设计业却获得持续的增长。
特别是96、97、98年持续三年的DRAM的跌价、MPU的下滑,世界半导体工业的增长速度已远达不到从前17%的增长值,若再依靠高投入提升技术,追求大尺寸硅片、追求微细加工,从大生产中来降低成本,推动其增长,将难以为继。
而IC设计企业更接近市场和了解市场,通过创新开发出高附加值的产品,直接推动着电子系统的更新换代;
同时,在创新中获取利润,在快速、协调发展的基础上积累资本,带动半导体设备的更新和新的投入;
IC设计业作为集成电路产业的"
龙头"
,为整个集成电路产业的增长注入了新的动力和活力。
1.1.2我国集成电路的发展
图我国集成电路设计
我国集成电路产业诞生于六十年代,共经历了三个发展阶段:
1965年-1978年:
以计算机和军工配套为目标,以开发逻辑电路为主要产品,初步建立集成电路工业基础及相关设备、仪器、材料的配套条件;
1978年-1990年:
主要引进美国二手设备,改善集成电路装备水平,在“治散治乱”的同时,以消费类整机作为配套重点,较好地解决了彩电集成电路的国产化;
1990年-2000年:
以908工程、909工程为重点,以CAD为突破口,抓好科技攻关和北方科研开发基地的建设,为信息产业服务,集成电路行业取得了新的发展。
近几年,中国集成电路产业取得了飞速发展。
中国集成电路产业已经成为全球半导体产业关注的焦点,即使在全球半导体产业陷入有史以来程度最严重的低迷阶段时,中国集成电路市场仍保持了两位数的年增长率,凭借巨大的市场需求、较低的生产成本、丰富的人力资源,以及经济的稳定发展和宽松的政策环境等众多优势条件,以京津唐地区、长江三角洲地区和珠江三角洲地区为代表的产业基地迅速发展壮大,制造业、设计业和封装业等集成电路产业各环节逐步完善。
2006年中国集成电路市场销售额为亿元,同比增长%。
其中IC设计业年销售额为亿元,比2005年增长%。
2007年中国集成电路产业规模达到亿元,同比增长%,集成电路市场销售额为亿元,同比增长%。
而计算机类、消费类、网络通信类三大领域占中国集成电路市场的%。
目前,中国集成电路产业已经形成了IC设计、制造、封装测试三业及支撑配套业共同发展的较为完善的产业链格局,随着IC设计和芯片制造行业的迅猛发展,国内集成电路价值链格局继续改变,其总体趋势是设计业和芯片制造业所占比例迅速上升。
1.1.3CPU芯片的发展
图1.1.3CPU实物图
CPU的溯源可以一直去到1971年。
在那一年,当时还处在发展阶段的INTEL公司推出了世界上第一台微处理器4004。
这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器!
4004含有2300个晶体管,功能相当有限,而且速度还很慢,被当时的蓝色巨人IBM以及大部分商业用户不屑一顾,但是它毕竟是划时代的产品,从此以后,INTEL便与微处理器结下了不解之缘。
可以这么说,CPU的历史发展历程其实也就是INTEL公司X86系列CPU的发展历程,我们就通过它来展开我们的“CPU历史之旅”。
1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令。
由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。
虽然以后Intel又陆续生产出第二代、第三代等更先进和更快的新型CPU,但都仍然兼容原来的X86指令,而且Intel在后续CPU的命名上沿用了原先的X86序列,直到后来因商标注册问题,才放弃了继续用阿拉伯数字命名。
至于在后来发展壮大的其他公司,例如AMD和Cyrix等,在486以前(包括486)的CPU都是按Intel的命名方式为自己的X86系列CPU命名,但到了586时代,市场竞争越来越厉害了,由于商标注册问题,它们已经无法继续使用与Intel的X86系列相同或相似的命名,只好另外为自己的586、686兼容CPU命名了。
1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为,地址总线为20位,可使用1MB内存。
8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。
1981年8088芯片首次用于IBMPC机中,开创了全新的微机时代。
也正是从8088开始,PC(personalcomputer——个人电脑)的概念开始在全世界范围内发展起来。
1982年,许多年轻的读者尚在襁褓之中的时候,INTE已经推出了划时代的最新产品枣80286芯片,该芯片比8006和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。
其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。
从80286开始,CPU的工作方式也演变出两种来:
实模式和保护模式。
Intel80286处理器
1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比,80386内部内含万个晶体管,时钟频率为,后提高到20MHz,25MHz,33MHz。
80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存。
它除具有实模式和保护模式外,还增加了一种叫虚拟86的工作方式,可以通过同时模拟多个8086处理器来提供多任务能力。
除了标准的80386芯片,也就是我们以前经常说的80386DX外,出于不同的市场和应用考虑,INTEL又陆续推出了一些其它类型的80386芯片:
80386SX、80386SL、80386DL等。
1988年推出的80386SX是市场定位在80286和80386DX之间的一种芯片,其与80386DX的不同在于外部数据总线和地址总线皆与80286相同,分别是16位和24位(即寻址能力为16MB)。
1990年推出的80386SL和80386DL都是低功耗、节能型芯片,主要用于便携机和节能型台式机。
80386SL与80386DL的不同在于前者是基于80386SX的,后者是基于80386DX的,但两者皆增加了一种新的工作方式:
系统管理方式。
当进入系统管理方式后,CPU就自动降低运行速度、控制显示屏和硬盘等其它部件暂停工作,甚至停止运行,进入“休眠”状态,以达到节能目的。
1989年,我们大家耳熟能详的80486芯片由INTEL推出,这种芯片的伟大之处就在于它实破了100万个晶体管的界限,集成了120万个晶体管。
80486的时钟频率从25MHz逐步提高到33MHz、50MHz。
80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。
它还采用了突发总线方式,大大提高了与内存的数据交换速度。
由于这些改进,80486的性能比带有80387数学协处理器的80386DX提高了4倍。
80486和80386一样,也陆续出现了几种类型。
上面介绍的最初类型是80486DX。
1990年推出了80486SX,它是486类型中的一种低价格机型,其与80486DX的区别在于它没有数学协处理器。
80486DX2由系用了时钟倍频技术,也就是说芯片内部的运行速度是外部总线运行速度的两倍,即芯片内部以2倍于系统时钟的速度运行,但仍以原有时钟速度与外界通讯。
80486DX2的内部时钟频率主要有40MHz、50MHz、66MHz等。
80486DX4也是采用了时钟倍频技术的芯片,它允许其内部单元以2倍或3倍于外部总线的速度运行。
为了支持这种提高了的内部工作频率,它的片内高速缓存扩大到16KB。
80486DX4的时钟频率为100MHz,其运行速度比66MHz的80486DX2快40%。
80486也有SL增强类型,其具有系统管理方式,用于便携机或节能型台式机。
踏入新世纪的CPU
进入新世纪以来,CPU进入了更高速发展的时代,以往可望而不可及的1Ghz大关被轻松突破了,在市场分布方面,仍然是Intel跟AMD公司在两雄争霸,它们分别推出了Pentium4、Tualatin核心PentiumⅡ和Celeron、Tunderbird核心Athlon、AthlonXP和Duron等处理器,竞争日益激烈。
1、在Intel方面,在上个世纪末的2000年11月,Intel发布了旗下第四代的Pentium处理器,也就是我们天天都能接触到的Pentium4。
Pentium4没有沿用PIII的架构,而是采用了全新的设计,包括等效于的400MHz前端总线(100x4),SSE2指令集,256K-512KB的二级缓存,全新的超管线技术及NetBurst架构,起步频率为。
第一个Pentium4核心为Willamette,全新的Socket423插座,集成256KB的二级缓存,支持更为强大的SSE2指令集,多达20级的超标量流水线,搭配i850/i845系列芯片组,随后Intel陆续推出了的WillametteP4处理器,而后期的P4处理器均转到了针角更多的Socket478插座。
和奔腾III一样,第一个Pentium4核心并不受到太多的好评,主要原因是新的CPU架构还不能受到程序软件的充分支持,因此Pentium4经常大幅落后于同频的Athlon,甚至还如Intel自己的奔腾III。
但在一年以后,Intel发布了第二个Pentium4核心,代号为Northwood,改用了更为精细的微米制程,集成了更大的512KB二级缓存,性能有了大幅的提高,加上Intel孜孜不倦的推广和主板芯片厂家的支持,目前Pentium4已经成为最受欢迎的中高端处理器。
在低端CPU方面,Intel发布了第三代的Celeron核心,代号为Tualatin,这个核心也转用了微米的工艺,与此同时二级缓存的容量提高到256KB,外频也提高到100Mhz,目前TualatinCeleron的主频有、、、等型号。
Intel也推出了Tualatin核心的奔腾III,集成了更大的512KB二级缓存,但它们只应用于服务器和笔记本电脑市场,在台式机市场很少能看到。
2、在AMD方面,在2000年中发布了第二个Athlon核心——Tunderbird,这个核心的Athlon有以下的改进,首先是制造工艺改进为微米,其次是安装界面改为了SocketA,这是一种类似于Socket370,但针脚数为462的安装接口。
最后是二级缓存改为256KB,但速度和CPU同步,与Coppermine核心的奔腾III一样。
Tunderbird核心的Athlon不但在性能上要稍微领先于奔腾III,而且其最高的主频也一直比奔腾III高,1Ghz频率的里程碑就是由这款CPU首先达到的。
不过随着Pentium4的发布,Tunderbird开始在频率上落后于对手,为此,AMD又发布了第三个Athlon核心——Palomino,并且采用了新的频率标称制度,从此Athlon型号上的数字并不代表实际频率,而是根据一个公式换算相当于竞争对手(也就是Intel)产品性能的频率,名字也改为AthlonXP。
例如AthlonXP1500+处理器实际频率并不是,而是。
最后,AthlonXP还兼容Intel的SSE指令集,在专门为SSE指令集优化的软件中也能充分发挥性能。
在低端CPU方面,AMD推出了DuronCPU,它的基本架构和Athlon一样,只是二级缓存只有64KB。
Duron从发布开始,就能远远抛离同样主攻低端市场的Celeron,而且价格更低廉,一时间Duron成为低价DIY兼容机的第一选择,但Duron也有它致命的弱点,首先是继承了Athlon发热量大的特点,其次是它的核心非常脆弱,在安装CPU散热器时很容易损坏。
各品牌的双核处理器
英特尔
“酷睿”是一款领先节能的新型微架构,设计的出发点是提供卓然出众的性能和能效,提高每瓦特性能,也就是所谓的能效比。
早期的酷睿是基于笔记本处理器的。
AMD
采用SocketAM2针脚的内核被称为“F”步进,它拥有目前“E”步进核心的全部特性,区别只在于由上代支持双通道DDR400提升至双通道DDR2800,并加入AMD虚拟技术。
1.2CPU构造原理
图CPU构造
CPU是中央处理单元(CentralProcessingUnit)的缩写,它可以被简称做微处理器(Microprocessor),不过经常被人们直接称为处理器(processor)。
不要因为这些简称而忽视它的作用,CPU是计算机的核心,其重要性好比大脑对于人一样,因为它负责处理、运算计算机内部的所有数据,而主板芯片组则更像是心脏,它控制着数据的交换。
CPU的种类决定了你使用的操作系统和相应的软件。
CPU主要由运算器、控制器、寄存器组和内部总线等构成,是PC的核心,再配上储存器、输入/输出接口和系统总线组成为完整的PC。
CPU的基本结构、功能及参数CPU主要由运算器、控制器、寄存器组和内部总线等构成。
寄存器组用于在指令执行过后存放操作数和中间数据,由运算器完成指令所规定的运算及操作。
1、算术逻辑单元ALU(ArithmeticLogicUnit)
ALU是运算器的核心。
它是以全加器为基础,辅之以移位寄存器及相应控制逻辑组合而成的电路,在控制信号的作用下可完成加、减、乘、除四则运算和各种逻辑运算。
就像刚才提到的,这里就相当于工厂中的生产线,负责运算数据。
2、寄存器组RS(RegisterSet或Registers)
RS实质上是CPU中暂时存放数据的地方,里面保存着那些等待处理的数据,或已经处理过的数据,CPU访问寄存器所用的时间要比访问内存的时间短。
采用寄存器,可以减少CPU访问内存的次数,从而提高了CPU的工作速度。
但因为受到芯片面积和集成度所限,寄存器组的容量不可能很大。
寄存器组可分为专用寄存器和通用寄存器。
专用寄存器的作用是固定的,分别寄存相应的数据。
而通用寄存器用途广泛并可由程序员规定其用途。
通用寄存器的数目因微处理器而异。
3、控制单元(ControlUnit)
正如工厂的物流分配部门,控制单元是整个CPU的指挥控制中心,由指令寄存器IR(InstructionRegister)、指令译码器ID(InstructionDecoder)和操作控制器0C(OperationController)三个部件组成,对协调整个电脑有序工作极为重要。
它根据用户预先编好的程序,依次从存储器中取出各条指令,放在指令寄存器IR中,通过指令译码(分析)确定应该进行什么操作,然后通过操作控制器OC,按确定的时序,向相应的部件发出微操作控制信号。
操作控制器OC中主要包括节拍脉冲发生器、控制矩阵、时钟脉冲发生器、复位电路和启停电路等控制逻辑。
4、总线(Bus)就像工厂中各部位之间的联系渠道,总线实际上是一组导线,是各种公共信号线的集合,用于作为电脑中所有各组成部分传输信息共同使用的“公路”。
直接
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- CPU 芯片 测试 技术