人教版七年级下册数学《第5章相交线与平行线》Word下载.docx
- 文档编号:20506766
- 上传时间:2023-01-23
- 格式:DOCX
- 页数:17
- 大小:114.21KB
人教版七年级下册数学《第5章相交线与平行线》Word下载.docx
《人教版七年级下册数学《第5章相交线与平行线》Word下载.docx》由会员分享,可在线阅读,更多相关《人教版七年级下册数学《第5章相交线与平行线》Word下载.docx(17页珍藏版)》请在冰豆网上搜索。
C.130°
D.120°
11.如图,一条公路修到湖边时,需拐弯绕道而过,如果第一次拐的角∠A=120°
,第二次拐的角∠B=150°
,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是( )
A.120°
B.130°
C.140°
D.150°
三、解答题
12.如图,已知AB∥CD,AC∥BD,试问∠1与∠3相等吗?
为什么?
13.如图所示,已知CD平分∠ACB,DE∥BC,∠AED=5O°
,求∠EDC的度数.
14.如图,a∥b,∠1=70°
,∠2=40°
,求∠3.
15.如图,已知,∠BAP与∠APD互补,∠1=∠2,在_____中填上理由,说明∠E=∠F.
解:
∵∠BAP+∠APD=180°
∴AB∥CD
从而∠BAP=∠APC
又∠1=∠2
∴∠BAP﹣∠1=∠APC﹣∠2
即∠3=∠4
∴AE∥PF( )
则∠E=∠F( )
16.已知如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°
,试判断BF与AC的位置关系,并说明理由.
17.已知∠1的两边分别与∠2的两边平行,若∠1=40°
,求∠2的度数.
参考答案与试题解析
,则∠2= 50 度.
【考点】平行线的性质;
对顶角、邻补角.
【专题】计算题.
【分析】要求∠2的度数,只需根据对顶角相等以及两直线平行,同位角相等的性质求解.
【解答】解:
∵∠3=∠1=50°
,
又AB∥CD,
∴∠2=∠3=50°
【点评】本题考查了平行线的性质以及对顶角的性质.
2.如图,已知AB∥CD,则∠A= 100 度.
【考点】平行线的性质.
【分析】本题主要利用两直线平行,同旁内角互补进行做题.
∵AB∥CD,
∴∠A+∠C=180°
∴∠A=100°
【点评】本题应用的知识点为:
两直线平行,同旁内角互补.
(1)因为EF∥AB,所以 CEF=∠CAB(∠CFE=∠CBA) (两直线平行,同位角相等);
(2)因为DE∥CB,所以 ∠DEF=∠EFC (两直线平行,内错角相等);
(3)因为 EF∥AB ,所以∠A+∠AEF=180°
【分析】根据平行线的性质两直线平行,同位角相等,内错角相等,同旁内角互补,结合图形填空即可.
(1)∵EF∥AB,
∴CEF=∠CAB(∠CFE=∠CBA)(两直线平行,同位角相等);
(2)∵DE∥CB,
∴∠DEF=∠EFC(两直线平行,内错角相等);
(3)∵∠A+∠AEF=180°
∴EF∥AB(同旁内角互补,两直线平行).
故答案为:
CEF=∠CAB(∠CFE=∠CBA),∠DEF=∠EFC,EF∥AB.
【点评】本题考查了平行线的性质及平行线的判定,属于基础题,关键是性质定理的熟练掌握.
,则∠1= 35 度.
【专题】计算题;
压轴题.
【分析】根据两直线平行同位角相等得到∠1=∠3=55°
,而∠ABC=90°
,通过∠1=90°
﹣∠3计算即可.
如图,
∵直线a∥b,
∴∠1=∠3=55°
而AB⊥BC,
∴∠ABC=90°
∴∠1=90°
﹣∠3=90°
﹣55°
=35°
故答案为35°
【点评】本题考查了直线平行的性质:
两直线平行同位角相等.也考查了平角的定义.
,那么∠β= 65 °
【分析】先根据垂直的定义求出∠1+∠α=90°
,然后求出∠1,再根据两直线平行,同位角相等求出∠β=∠1,代入数据即可得解.
如图,∵AC⊥DC,
∴∠1+∠α=90°
∵∠α=25°
﹣∠α=90°
﹣25°
=65°
∵a∥b,
∴∠β=∠1=65°
65°
【点评】本题考查了平行线的性质,垂直的定义,是基础题,熟记性质是解题的关键.
,则∠2= 20°
.
【分析】由AB∥CD,AF∥CE,根据两直线平行,内错角相等,即可求得∠BAC=∠DCA,∠FAC=∠ECA,继而求得答案.
∵AB∥CD,AF∥CE,
∴∠BAC=∠DCA,∠FAC=∠ECA,
∴∠BAC﹣∠FAC=∠DCA﹣∠ECA,
∴∠2=∠1=20°
20°
【点评】此题考查了平行线的性质.此题难度不大,注意掌握数形结合思想的应用.
,则∠D的度数是 130°
【分析】首先根据平行线的性质可得∠B=∠C=50°
,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.
∴∠B=∠C=50°
∵BC∥DE,
∴∠C+∠D=180°
∴∠D=180°
﹣50°
=130°
130°
【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.
,则∠C= 70 °
三角形内角和定理.
【分析】根据平行线性质得出∠B+∠BAD=180°
,∠C=∠DAC,求出∠BAD,求出∠DAC,即可得出∠C的度数
∵AD∥BC,
∴∠B+∠BAD=180°
∵∠B=40°
∴∠BAD=140°
∵AC平分∠DAB,
∴∠DAC=
∠BAD=70°
∵A∥BC,
∴∠C=∠DAC=70°
70.
【点评】本题考查了平行线性质和角平分线定义,关键是求出∠DAC或∠BAC的度数.
9.若两条平行线被第三条直线所截,则同位角的平分线互相 平行 ;
内错角的平分线互相 平行 ;
同旁内角的平分线互相 垂直 .
【考点】平行线的判定.
【分析】若两条平行线被第三条直线所截,则同位角相等,则同位角的平分线与第三条直线组成的角相等,所以同位角的平分线互相平行,同理内错角的平分线互相平行,因为两直线平行,同旁内角互补,所以同旁内角的平分线互相垂直.
(1)如图1,AB∥CD,EF与AB、CD分别相交于点O、M,OP、MN分别是∠BOE、∠DMO的平分线.
∴∠BOE=∠DMO(两直线平行,同位角相等).
∵OP、MN分别是∠BOE、∠DMO的平分线,
∴∠1=
∠BOE,∠2=
∠DMO,
∴∠1=∠2,
∴OP∥MN(同位角相等,两直线平行);
(2)如图2,AB∥CD,EF与AB、CD分别相交于点O、M,OP、MN分别是∠AOM、∠DMO的平分线.
∴∠AOM=∠DMO(两直线平行,内错角相等).
∵OP、MN分别是∠AOM、∠DMO的平分线,
∠AOM,∠2=
∴OP∥MN(内错角相等,两直线平行);
(3)如图3,AB∥CD,EF与AB、CD分别相交于点O、M,OP、MN分别是∠BOM、∠DMO的平分线,并相交于点H.
∴∠BOM+∠DMO=180°
∵OP、MN分别是∠BOM、∠DMO的平分线,
∠BOM,∠2=
∴∠1+∠2=90°
在△OMH中,
∠1+∠2+∠OHM=180°
∴∠OHM=180°
﹣90°
=90°
即OP⊥MN.
【点评】此题主要考查了平行线的判定定理即平行线的判定定理一两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行(简记为:
内错角相等,两直线平行).平行线的判定定理二两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(简记为:
同旁内角互补,两直线平行).
对顶角、邻补角;
同位角、内错角、同旁内角.
【分析】本题主要利用两直线平行,同旁内角互补以及对顶角相等进行做题.
∵l1∥l2,
∴130°
所对应的同旁内角为∠1=180°
﹣130°
=50°
又∵∠α与(70°
+∠1)的角是对顶角,
∴∠α=70°
+50°
=120°
故选:
D.
【点评】本题重点考查了平行线的性质及对顶角相等,是一道较为简单的题目.
【专题】压轴题.
【分析】首先根据题意作辅助线:
过点B作BD∥AE,即可得AE∥BD∥CF,则可求得:
∠A=∠1,∠2+∠C=180°
,则可求得∠C的值.
过点B作BD∥AE,
∵AE∥CF,
∴AE∥BD∥CF,
∴∠A=∠1,∠2+∠C=180°
∵∠A=120°
,∠1+∠2=∠ABC=150°
∴∠2=30°
∴∠C=180°
﹣∠2=180°
﹣30°
=150°
【点评】此题考查了平行线的性质.注意过一点作已知直线的平行线,再利用平行线的性质解题是常见做法.
【分析】根据平行线的性质可得∠1=∠2,∠2=∠3,继而可证明∠1=∠3.
相等.
又∵AC∥BD,
∴∠2=∠3,
∴∠1=∠3.
【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:
两直线平行,内错角相等;
两直线平行,同位角相等.
【分析】根据平行线的性质,可得∠ACB=∠AED=50°
,然后根据角平分线的性质,易求得∠EDC的度数.
∵DE∥BC,∠AED=50°
∴∠ACB=∠AED=50°
∵CD平分∠ACB,
∴∠BCD=
∠ACB=25°
∴∠EDC=∠BCD=25°
【点评】本题考查了平行线的性质,解答本题的关键是掌握:
两直线平行,同位角相等;
两直线平行,内错角相等.
【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠4的度数,继而可求得答案.
∴∠4=∠2=40°
∵∠1+∠3+∠4=180°
,∠1=70°
∴∠3=70°
已知
∴AB∥CD 同旁内角互补,两直线平行
从而∠BAP=∠APC 两直线平行,内错角相等
又∠1=∠2 已知
∴∠BAP﹣∠1=∠APC﹣∠2 等式的性质
∴AE∥PF( 内错角相等,两直线平行 )
则∠E=∠F( 两直线平行,内错角相等 )
【考点】平行线的判定与性质.
【专题】推理填空题.
【分析】根据已知可得出AB∥CD,进而由∠1=∠2可证得∠3=∠4,故能得出AE∥FP,即能推出要证的结论成立.
理由是:
(已知 )
∴AB∥CD(同旁内角互补,两直线平行)
从而∠BAP=∠APC(两直线平行,内错角相等)
又∵∠1=∠2(已知)
∴∠BAP﹣∠1=∠APC﹣∠2(等式的性质)
∴AE∥PF(内错角相等,两直线平行 )
∴∠E=∠F(两直线平行,内错角相等)
已知,同旁内角互补,两直线平行,两直线平行,内错角相等,已知,等式的性质,内错角相等,两直线平行,两直线平行,内错角相等.
【点评】本题考查了平行线的性质与判定,正确熟记平行线的判定和性质是解答本题的关键.
16.(2015春•大石桥市校级期末)已知如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°
【考点】平行线的判定与性质;
垂线.
【专题】探究型.
【分析】先结合图形猜想BF与AC的位置关系是:
BF⊥AC.要证BF⊥AC,只要证得DE∥BF即可,由平行线的判定可知只需证∠2+∠3=180°
,根据平行线的性质结合已知条件即可求证.
【解答】证明:
BF与AC的位置关系是:
BF⊥AC.
理由:
∵∠AGF=∠ABC,
∴BC∥GF(同位角相等,两直线平行),
∴∠1=∠3;
又∵∠1+∠2=180°
∴∠2+∠3=180°
∴BF∥DE;
∵DE⊥AC,
∴BF⊥AC.
【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
【分析】作出图形,根据两边互相平行的两个角相等或互补解答.
如图1,
∵∠1与∠2的两边分别平行,∠1=40°
∴∠1=∠3,∠2=∠3,
∴∠1=∠2=40°
,;
如图2,
∴∠3=∠1=40°
∴∠2=180°
﹣∠3=180°
﹣40°
=140°
综上所述,∠2的度数等于40°
或140°
【点评】本题考查的是平行线的性质,即两直线平行,同位角相等;
初中数学试卷
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第5章 相交线与平行线 人教版七年级下册数学第5章 相交线与平行线 人教版七 年级 下册 数学 相交 平行线