高考考试说明中的变与不变的研究Word格式.docx
- 文档编号:20419500
- 上传时间:2023-01-22
- 格式:DOCX
- 页数:16
- 大小:42.19KB
高考考试说明中的变与不变的研究Word格式.docx
《高考考试说明中的变与不变的研究Word格式.docx》由会员分享,可在线阅读,更多相关《高考考试说明中的变与不变的研究Word格式.docx(16页珍藏版)》请在冰豆网上搜索。
(4)试题结构变脸,体现《新课程标准》理念.
2011年的试卷结构是全卷21—22道试题,且填空题的数量调整为7或8道,同时试卷中要求含有涉及选修系列4的选做题,分值是:
文科5—10分,理科10—14分.这一变化很好地体现《新课标》的理念,同时选做题的命题形式没有说明命题形式,给高考命题留有灵活选择的空间.
(5)样卷演变为题型示例,拓展高考命题灵活性和选择性
2011年《考试说明》中没有了样卷,而是以题型示例的形式出现,题型示例给出了12道选择题,10道填空题和15道解答题共37道试题.分析示例不难发现均涉及《考试说明》中要求为理解和掌握的主干知识和重点与热点内容,同时学科的各模块均有示例,新课程标准中的新增考点几乎均有示例.解答题示例涉及的模块分别是概率与统计,三角函数和解三角形、数列、立体几何、解析几何、函数和导数、应用题,而几乎所有的新增考点均以选择题和填空题的形式出现,可见题型示例比样卷考点覆盖面更广,为高考命题拓展了空间,增加了高考命题的灵活性.
2011年《考试说明》删除了有关命题和试卷结构的说明,虽然被删除的有关命题试卷结构的说明中含盖思想的论述在命题思想与原则中有类似阐述,其删除理由可能是有关命题和试卷结构的说明中论述的内容是叙述怎样命制一套高质量的试卷的基本原则和指导思想,高考命题者掌握即可,这样使《考试说明》的纲领性更加优法,不适宜考生阅读和理解.
二、《考试说明》中的“不变”及解读
2011年《考试说明》中有关“数学基础知识(必修部分和选修必考部分)、数学思想与方法、数学能力”部分整体没有改变,反例题和考纲阐释存极少的更换和修订.整体精神实质没有变化,下面分模块作简要解读.
(1)、整体解读
(一)命题指导思想
2011年的《考试说明》的命题指导思想有适量调整,其中保持不变的是:
1°
考查考生的数学基础知识,基本技能和数学思想方法.
2°
注重考查考生的数学基本能力,应用意识和创新意识.
3°
考查考生对数学本质的理解.
4°
充分体现《课程标准》的基本理念,有利于课程改革的实施.
(二)命题原则
2011年的《考试说明》中的命题原则均保持不变
强化主干知识,从学科整体意义上设计试题.
注重通解通法,强调考查数学思想方法.
强调以能力立意,突出考查能力素质的导向.
坚持数学应用,考查应用意识.
5°
开放探索,考查探究精神,开拓展现创新意识的空间.
6°
体现要求层次,控制试卷难度(理科难度系数为0.5~0.55,文科难度系数为0.45~0.5).
(三)数学知识范畴及要求:
理科:
必修课程,选修系列2和选修系列4(4-1,4-4,4-5,4-7)
文科:
必修课程,选修系列1和选修系列4(4-4,4-7)
知识要求:
(1)了解
(2)理解(3)掌握
数学思想方法:
函数与方法思想、数形结合思想、分类与整合思想、化归与转化思想、特殊与一般思想、有限与无限思想、或然与必然思想.
能力要求:
空间想象能力,抽象概括能力,推理论证能力,运算求解能力,数据处理能力,应用意识,创新意识.
(四)解读考纲
2011年《考试说明》仍坚持知能并重以能力立意的命题指导思想,仍将会形成“立意鲜明,背景新颖,设问灵活,层次清晰”的湖南卷特色,有利于高校创新人才的选拔和有利于数学课程改变的实施.
从学科整体意义的高度设计试题是指命题既要注意知识的整体性,注意学科知识的内在联系;
按照高中数学新课程标准编写的教材,一般都强调过程,突出思想,重视探究.教材陈述的内容属于“程序性知识”的范畴,比过去的那些具体的知识内容(陈述性知识)更为重要;
又强调知识之间的交叉、渗透和综合,在知识网络的交汇点设计试题.
数学思想方法属方法范畴,但更多地带有思想、观点的属性,属于较高层次的提炼概括.在中学教学与高考考查中,数学思想有函数与方程的思想,数形结合的思想,分类与整合的思想,化归与转化的思想,特殊与一般的思想,有限与无限的思想,或然与必然的思想等;
基本数学方法有待定系数法,换元法,配方法,割补法,反证法等;
数数逻辑方法或思维方法有分析与综合,归纳与演绎,比较与类比,具体与抽象等.这些都是数学中常用的思想和方法.
数学科高考的重点是考查运用知识分析和解决问题的能力,因此高考命题提高了对解决问题的能力的要求,增加思考量,控制运算量,要求考生抓住问题的实质,对试题提供的信息进行分检、综合、加工,从而寻找解决问题的方法.这样的试题,不同于知识型试题,知识型试题通过一定时间的训练,形成固定的解题模式、记忆性的操作步骤,从而使解题过程变成一系列机械的操作程序.而高考试题是能力型试题,没有固定的模式,思维水平要求提高,思维容量大,能有效展示考生的思维水平和创造意识,完成这样的试题需要有较强的能力,依靠“题海战术”是难以奏效的.
考查应用意识是通过解答实际应用问题来体现的.考查的重点是客观事物的数学化,这个过程主要是依据现实生活的背景,提炼相关的数量关系,构造数学模型并加以解决.命题坚持“贴近生活,背景公平,控制难度”的原则.
考查命题坚持“贴近生活,背景公平,控制难度”的原则探究精神,开放型试题是一种很好的题型.在设计试题时,可以适量设置开放型的试题,鼓励考生创造性地解答,从而考查考生的创新意识.考查创新意识,命题要体现创新精神,试题的创新,既要体现在创设试题的新颖情境和设问方式上,更要体现在思维价值水平上.
7°
难度系数体现在每种题型中都编拟一些较易试题,使大部分考生都能得到一定的基本分,并在每种题型中都编拟一些有一定难度的度题,从而实现高考的选拔的功能,高考有别于学业水平考试和教学竞赛.
8°
对知识的要求分为:
了解、理解、掌握三个层次,了解这一层次是即知道即可所涉及的主要行为动词有:
了解,知道、识别、模仿、会求、会解等.理解这一层次是理性认识,具备利用所学知识解决简单问题的能力,所涉及的主要行为动词有:
描述、说明、表达、推测、想象、比较、判别、初步应用等.
9°
掌握这一层次是指推导和证明,能利用所学知识对问题进行分析、研究、讨论,所涉及的主要行为动词有:
掌握、导出、分析、推导、证明、研究、讨论、运用、解决问题等.
二、知识模块的考查要求和解读
(一)集合
1°
考纲要求:
考点
要求
集合的含义,元素与集合、集合与合集的关系,全集与空集,集合运算
了解
集合相等与包含的含义,并集、交集、补集的含义,韦恩图,集合语言
理解
命题趋势:
新课程标准命题的省市一般是以一道容易题考查集合的相等和包含关系,两个集合的交集、并集、补集运算,通常与简单不等式的解集综合,也有注重考查集合语言、韦思图和与集合相关的创新意识的趋势.
解读考纲:
新课程标准的《考试新说明》对集合模块的要求有所降低,具体体现在元素和集合的关系,集合运算等考点,同时强调集合语言和韦恩图的应用;
既强化集合本身的基础知识,又要注意集合知识与其它知识的交汇,提升知识迁移能力,集合语言与集合思想的应用的能力的考查.
(二)常用逻辑用语
考纲要求
考点
要求
四种命题及相互关系,逻辑联结词或、非、且的含义
命题的概念,充要条件,全称量词与存在量词的意义及否定
理解
新课程标准命题的省市均以一道中档难度的试题考查全称量词或存在量的含义及否定,有部分省市同时命制了一道中档偏难的试题考查充要条件的判定;
如山东卷22题第
(2)小问考查量词的意义,安徽卷20题考查充要条件的论证.
解读考纲
新大纲新增了全称量词与存在量词的意义及否定,降低了命题的四种形式及相互关系和逻辑联结词的含义的要求(由理解变为了解),考试说明明确了删除其值表,强化逻辑思想、等价转思想和推理论证能力的考查要求.
(三)算法初步
考点
算法的含义,算法思想
程序框图的结构,算法语句的含义
新课程标准命题省市一般都命制有一道有关程序结构框图的中档难度的选择题或填空题考查算法思想,同时其算法涉及数列、函数、统计等知识,其中部分试题要求是完善判断框或循环结构.
考纲解读:
算法初步系新考纲新增考点,主要考查识图能力和算法思想,以及在运用程序框图的过程中有条理的思考与表达的能力.对考生的识图能力、转化化归能力和理性思维能力的考查要求较突出.
(四)复数
复数代数表示法及几何意义,复数的四则运算法则,
加、减运算的几何意义,复数的四则运算
复数的概念,复数相等的充要条件,
新课程标准省市有关复数的命题大都涉及复数的四则运算复数的概念及分类,复数相等的充要条件等主干知识,试题难度均为容易题.
新大纲强化了复数的概念,体现了理性思维在数系扩充中的作用,同时提升了复数相等充要条件的要求,固化了复数代数形式的简单四则运算的考查层次,其宗旨是应注重基础和运算能力的考查.
(五)函数的概念与基本初等函数(Ⅰ)
函数的三要素,函数的表示,映射,函数的奇偶性,简单分段函数的概念,反函数,换底公式,幂函数,函数的零点,函数模型,应用函数图象研究函数性质
函数单调性,函数在某区间的最值及几何意义,函数图象,幂式的运算,对数式的运算,分段函数的应用,指数函数,对数函数,一元二次方程根的分布,二分法
掌握
新课标命题省市通常以1~2道中档或中档偏难的选择题或填空题考查基本初等函数与函数的基础理论,同时和数形结合思想,函数方程思想的考查,命题有侧重考查函数零点,一元二次函数和一元二次方程的分布,分段函数等新增和重点考点的趋势.
新考纲强化了函数模型的实际背景和应用,如要求了解指数函数模型的实际背景,了解指数函数、对数函数以及幂函数的增长特征、含义及其广泛应用;
强化了函数与方程、不等式、算法等内容的联系,如要求了解函数的零点与方程根的联系,能根据具体函数的图象,用二分法求相应方程的近似解;
提升了数形结合、函数与方程等数学思想方法的要求,如要求理解函数的单调性、最大(小)及其几何意义,会运用函数图象理解和研究函数的性质;
降低了对反函数的考查要求,一般地讨论形式化的反函数数的定义域和值域以及求反函数均不做要求,提升了有关函数创新型试题的创新意识的考查要求,同时注重数学思想方法在分析求解函数问题的能力的考查.
(六)导数及其应
1°
考点
导数概念的实际背景,函数单调性和导数的关系,函数取得极值的充要条件,应用导数求解优化问题,定积分
导数的几何意义,初等函数的导数,导数的四则运算,简单复合函数的导数,利用导数研究函数的单调性和极值、最值
新课程命题省市均大都一道难题(必抽题)考查应用导数研究函数的能力,注重考查探究能力和构造函数应用导数解决方程与不等式的创新意识,同时有关函数模型的实际应用问题的求解.也常利用导数的工具性作用,应用考查考生的意识,试题常以函数、数列和不等式为命题背景,综合考查数学思想和方法.
新大纲新增了定积分的基本知识,但其要求为了解,同时对多项式函数和复合函数的结构进行的严格的限制,从而体现新考纲对以导数为解决问题的工具性的要求有所降低,考纲明确提出了应用导数解决实际优化问题,强化了应用意识.同时,在应用导数解决问题的过程中渗透数学思想与方法、提高探究问题的难度,对探究能力的要求有所提高.
(七)三角函数
任意角的概念,弧度制,函数
的物理意义,A、
对图象的影响、周期性、周期变化的实际问题.
弧度与角度的互化、三角函数(正弦、余弦、正切)的定义,诱导公式(
),正弦函数与余弦函数在[0,2π]的单调性、最值、正切函数在(
)的单调性,同角关系式,两角和与差的正弦、余弦、正切公式、二倍角公式、简单恒等变换
新课程命题省市一般是以一道中档难度的选择题或填空题和一道解答题考查三角函数图象与性质,三角恒等变换,常与解三角形和向量知识综合.试题注重两角和与差公式、二倍角公式的综合应用能力的考查,同时也偶尔会命制涉及三角函数定义得情境新颖的选择题考查数形结合思想.
新考纲删减了任意角的余切、正割、余割以及用符号
表示角等内容,也降低了三角恒等变换的要求,如仅要求理解同角三角函数的两个基本关系式“
”等;
增加了“了解参数
对函数
)图象变化的影响”、“了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际的问题”等要求.高考中,主要考查对三角函数概念的理解,运用三角函数公式进行三角函数式的化简、求值与证明,三角函数的图象和性质(尤其是形如
)的函数图象与性质)以及图象变换、读图识图、图象的运用等知识和方法.与其他内容(如向量、曲线的参数方程、应用问题)综合时,三角知识将主要发挥其工具性的作用.新考纲不仅要求能运用两角和(差)的正弦、余弦、正切公式及二倍角的正弦、余弦、正切公式进行简单的恒等变换,还要求了解这些公式的内在联系.但同时应注意控制三角恒等变换及其应用的繁、难程度,不要求记忆积化和差、和差化积、半角化公式并应用其进行复杂的恒等变形.
(八)、平面向量
向量的实际背景,向量线性运算性质及几何意义,平面向量基本定理,数量积与向量投影的关系,向量在实际问题和平面几何中的应用
平面向量的概念,向量相等的含义,向量的几何表示,向量的四则运算,数量积和实数与向量乘积的几何意义及应用,向量的正交分解及坐标表示,共线向量的条件,垂直向量的判断及应用,向量夹角的求法
有关向量的运算及运算的几何意义是高考考查的热点,常以一道中档难度的选择题和填空题进行考查,并且在应用向量运算几何意义的过程中渗透数形结合思想和推理能力的考查.有时也会命题有关向量坐标运算的容易题考查考生向量的平行与垂直关系等基础知识.
新考纲明确要求“了解向量的实际背景、理解数量积的物理意义、向量在力学中问题的应用”,新增了“掌握平面向量的正交分解及其坐标表示”、“向量的应用”等内容,同时又删除了线段的定比分点、平移公式等知识,且对考试要求的层次进行了部分调整,更加突出了向量的实际背景、几何意义、运算功能和应用价值.
(九)、解三角形
正弦定理,余弦定理,三角形面积公式,实际应用(测量与几何计算)
新课程命题省市有时会命制一道解三角形的选择题和填空题考查正、余弦定理应用能力,同时常以三角形中的三角函数问题的解答题考查化归与转化数学思想.同时有关测绘的实际应用问题已成为命题的一大热点、注重考查应用意识和解斜三角形的能力.
新考纲仍然强调正弦定理,余弦定理的工具性作用,同时强化了应用正、余弦定理解解决有关测量实际问题的功能.
(十)、数列
数列的概念及表示,数列与函数,等差数列与一次函数,等比数列与指数函数
等差数列的概念,通项公式,前n次和公式等比数列的概念,通项公式,前n次和公式等差数列与等比数列的识别与应用
新课标命题省市关于数列考查的趋势是命制了一道有关等差、等比数列基础知识的中档难度的选择题和填空题或解答题,考查等差和等比数列的基础知识,命制了一道数列、函数、不等式有关的综合型解答题,并以压轴题形式出现,考查推理论证能力、探究思维能力和转化化归、分类整合的数学思想,同时高考命题大有淡化递推数列,注重等差、等比数列的趋势.
新大纲删除了有关数列递推公式的要求.对数列内容的处理更加突出了函数思想、数学模型思想以及离散与连续的关系,要求从函数的观点、模型的观点、连续与离散的关系的角度认识数列;
由于数列内容与函数、不等式等内容关系密切,又是初等数学与高等数学的一个重要衔接点,并且一个数列综合问题的解决过程往往体现多种数学能力,所以它是考查数学思维能力和数学思想方法的好素材.考纲要求充分体现了淡化递推数列,强化思想、方法与能力的考查.
(十一)、不等式
不等关系及实际背景,一元二次不等式与二次函数、一元二次方程的联系,二元一次不等式的几何意义
一元二次不等式的解法,线性规划问题,应用基本不等式求最值
新课程命题省市有关不等式的考查充分体现不等式的工具性作用,有机地将不等式的性质、解法、证明融入高考命题的三大题型之中,偶也会命题一道有关不等式的中档难度的选择题或填空题,同时有关线性规划的考查呈现含参变量,注重考查推理能力的趋势,考查不等式的基础知识.
高考中对不等式内容的考查包括不等式的性质、简单的不等式的解法及基本不等式的应用等.由于不等式具有应用广泛,变换灵活、知识综合、能力复合等特点,因此,高考考查时更多的是与函数、方程、数列、三角、解析、几何、立体几何及实际应用问题相互交叉和综合,将不等式及其性质的运用渗透到这些问题的求解过程中进行考查.线性规划是数学应用的重要内容之一,其蕴含的优化思想方法是数学中的基本思想方法,用图解法求解线性规化问题的过程也是体现数形结合的好素材.新考纲对不等式的解法与证明明显降低了考查要求,考查的知识范围也明显减少.
(十二)、统计
抽样方法、频率分布表、直方图、折线图、茎叶图、样本估计总体,散点图,变量间的相关关系,随机抽样的方法与思想的实际应用,样本估计总价值的实际应用,独立检验,最小二乘法思想,回归分析的思想与方法,正态分布曲线的特点和意义
抽样方法的意义,平均数,标准差,回归方程,离散型随机变量的分布列期望与方差
新课程命题省市常以一道中档难度的选择题或填空题考查正态分布曲线或特征的应用,茎叶图和直方图的应用以及识图能力,以及样本均值与方差的计算,有与程序框图综合的命题趋势,在以一道中档难度的解答题中考查独立检验(
列联表)、与直方图有关的样本估计总体及概率计算并且试题情境新颖.
新考纲中茎叶图,独立检验,回归分析系新增知识点,而独立性检验、回归分析的考查大都呈现只要了解并能直接应用的考查要求,对理论基础不必要作过多过深的要求.同时正态分布问题注意数形结合,由于删去的正态分布表,只要求应用“
”原则分析实际问题,从而考查要求有所降低,注重考查阅读理解能力.
(十三)计数原理(理)
分类计数原理和分类计数原理的应用,二项式定理的应用
分类计数原理和分步计数原理的理解,排列的概念及排列数的计算,组合的概念及组合数的计算.二项式定理
高考考查该模块的试题出现的频率明显减少,试题均以选择题或填空题形式出现,着重考查两个原理,排列与组合的实际应用.以及二项次定理及其通项的简单应用.
新考纲要求与以往相比二项式定理和计数原理的应用降低了要求,高考着重考查基础理论的实际应用和应用意识以及分类与整合,特殊与一般的数学思想,同时文科考生这模块不作考查要求.
(十四)概率、期望与方差
随机事件,频率与概率的识别,互斥事件的加法公式,条件概率和独立事件的概念,几何概型,随机数及模拟方法.
古典概率及计算,互斥与独立事件概率的计算,模拟方法估计概率,离散型随机变量及分布列,期望与方差,独立重复试验及二项分布,超几何分布.
新课程命题省市大多命制一道中档难度的解答题考查离散型随机变量的分布列,期望的计算,考查考生的阅读理解能力和分类整合思想或必然思想以及应用意识,同时将古典概型、互斥和独立事件的概率计算融入其中,有时也有命制一道中档难度的选择题或填空题考查古典概率、几何概型,新课标命题省市有加大概率与统计综合考查的趋势,同时概率与统计在全卷中的分值明显增加.
新考纲新增了条件概率、几何概型,删去了几何分布.同时互斥事件与独立事件概念及计算的要求有所降低,同时突出概率与统计的实际应用和统计思想的应用.
(十五)推理与证明
合情推理的含义,演绎推理的重要性,分析法、综合法和反证法应用的思考过程数学归纳法原
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 考试 说明 中的 不变 研究