八年级数学下《一次函数》综合提高题及答案Word文件下载.docx
- 文档编号:20409699
- 上传时间:2023-01-22
- 格式:DOCX
- 页数:23
- 大小:335.25KB
八年级数学下《一次函数》综合提高题及答案Word文件下载.docx
《八年级数学下《一次函数》综合提高题及答案Word文件下载.docx》由会员分享,可在线阅读,更多相关《八年级数学下《一次函数》综合提高题及答案Word文件下载.docx(23页珍藏版)》请在冰豆网上搜索。
A.3B.
C.
D.
18.如图1,在Rt△ABC中,∠ACB=900,点P以每秒1cm的速度从点A出发,沿折线AC→CB运动,到点B停止.过点P作PD⊥AB于点D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()
A.1.2cmB.1.5cmC.1.8cmD.2cm
19.如图,已知直线l:
y=
x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;
过点A1作y轴的垂线交直线于点B1,过点B1作直线l的垂线交y轴于点A2;
…;
按此作法继续下去,则点A4的坐标为( )
A.(0,64)B.(0,128)C.(0,256)D.(0,512)
20.如图,在平面直角坐标系中,直线l:
x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A5B6A6的周长是()
A.24
B.48
C.96
D.192
21.函数
中的自变量x的取值范围是
22.已知函数
若它是一次函数,则m=;
y随x的增大而.
23.已知一次函数y=(k+3)x+2k-10,y随x的增大而增大,且图象不经过第二象限,则k的取值范围为.
24.已知A(x1,y1),B(x2,y2)是一次函数y=kx+3(k<
0)图象上的两个不同的点,若t=(x1-x2)(y1-y2),
则t0.
25.已知直线y=kx-6与两坐标轴所围成的三角形面积等于12,则直线的表达式为
26.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为 .
27.如图,点A的坐标为(-2,0),点B在直线y=x-4上运动,当线段AB最短时,点B的坐标是___________。
28.直线y=kx+b(k>0)与y=mx+n(m<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b﹣n等于 .
29.如图,经过点B(-2,0)的直线
与直线
相交于点A(-1,-2),则不等式
的解集为.
30.一次函数y=kx+b,当1≤x≤4时,3≤y≤6,则b的值是 .
31.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线
平行.则在线段AB上,横、纵坐标都是整数的点的坐标是 .
32.已知两个一次函数
.若无论x取何值,y总取y1,y2中的最小值,则y的最大值为.
33.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:
①a=8;
②b=92;
③c=123.其中正确的是
34.已知直线
(n为正整数)与坐标轴围成的三角形的面积为Sn,
则S1+S2+S3+…+S2016=____________.
35.已知y-2与2x+3成正比例,当x=1时,y=12,求y与x的函数关系式.
36.一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:
升)与时间x(单位:
分)之间的关系如图所示.当容器内的水量大于5升时,求时间x的取值范围.
37.某花农要将规格相同的800件水仙花运往A,B,C三地销售,要求运往C地的件数是运往A地件数的3倍,各地的运费如下表所示:
(1)设运往A地的水仙花x(件),总运费为y(元),试写出y与x的函数关系式;
(2)若总运费不超过12000元,最多可运往A地的水仙花多少件?
38.某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如表所示:
(1)若商场预计进货款为3500元,则这两种台灯各购进多少盏?
(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?
此时利润为多少元?
39.已知小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y(米)关于时间x(分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:
(1)小文走了多远才返回家拿书?
(2)求线段AB所在直线的函数解析式;
(3)当x=8分钟时,求小文与家的距离.
40.小明用的练习本可在甲、乙两个商店内买到.已知两个商店的标价都是每个练习本1元.
甲商店的优惠条件是:
购买10本以上,从第11本开始按标价的70%卖;
乙商店的优惠条件是:
从第1本开始就按标价的85%卖.
(1)分别写出甲乙两个商店中,收款y(元)与购买本数x(本)之间的函数关系式,并写出它们的取值范围;
(2)小明如何选择合适的商店去购买练习本?
请根据所学的知识给他建议.
41.某商店欲购进甲、乙两种商品,已知甲的进价是乙的进价的一半,进3件甲商品和1件乙商品恰好用200元.甲、乙两种商品的售价每件分别为80元、130元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.
(1)求这两种商品的进价.
(2)该商店有几种进货方案?
哪种进货方案可获得最大利润,最大利润是多少?
42.1号探测气球从海拔5m处出发,以1m/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升.两个气球都匀速上升了50min.
设气球上升时间为xmin(0≤x≤50).
(1)根据题意,填写下表:
上升时间/min
10
30
…
x
1号探测气球所在位置的海拔/m
15
2号探测气球所在位置的海拔/m
(2)在某时刻两个气球能否位于同一高度?
如果能,这时气球上升了多长时间?
位于什么高度?
如果不能,请说明理由.
(3)当30≤x≤50时,两个气球所在的位置的海拔最多相差多少米?
43.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;
折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:
(1)轿车到达乙地后,货车距乙地多少千米?
(2)求线段CD对应的函数解析式;
(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇.
44.某文具商店销售功能相同的两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;
购买3个A品牌和1个B品牌的计算器共需122元.
(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:
A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买个x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;
(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?
请说明理由。
45.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.
已知从A市调运一台机器到C市和D市的运费分别为400元和800元;
从B市调运一台机器到C市和D市的运费分别为300元和500元.
(1)设B市运往C市机器x台,总运费为y元,求总运费y关于x的函数关系式.
(2)若要求总运费不超过9000元,问共有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少?
46.如图,已知等腰直角△ABC的边长与正方形MNPQ的边长均为12cm,AC与MN在同一条直线上,开始时,A点与M点重合,让△ABC向右运动,最后A点与N点重合.
(1)试写出重叠部分面积S(cm2)与MA的长度x(cm)之间的函数解析式;
(2)当MA=4cm时,重叠部分的面积是多少?
(3)当MA的长度是多少时,等腰直角△ABC与正方形重叠部分以外的四边形BCMD的面积与重叠部分的面积的笔直为5:
4?
47.为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.
根据这个购房方案:
(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;
(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;
(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60时,求m的取值范围.
48.已知一次函数y=kx+b的图象经过点A(2,0)与B(0,4).
(1)a=;
b=.图象经过第象限;
(2)当-2≤x≤4时,对应的函数值y取值范围为;
(3)若点P在此直线上,当S△OBP=2S△OAB时,求点P的坐标;
(4)当点P在线段AB上运动时,设点P的横坐标为t,△OAP的面积为S,请找出S与t的函数关系式,并写出自变量t的取值范围.
49.如图,已知矩形ABCD在坐标系中,A(1,1),C(5,3),P在BC上从B点出发,沿着BC-CD-DA运动,到A点停止运动,P点运动速度为1个单位/秒.设运动时间为t,△ABP的面积为S.
(1)找出S与t(秒)的函数关系式,并找出t的取值范围;
(2)当△ABP的面积为3时,求此时点P的坐标;
(3)连接OP,当直线OP平分矩形ABCD的周长时,求点P的坐标;
(4)连接OP,当直线OP平分矩形ABCD的面积时,求点P的坐标;
(5)当点P在BC上时,将△ABP沿AP翻折,当B点落在CD上时,求此时点P的坐标.
50.如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足
.
(1)求直线AB的解析式;
(2)若点C为直线y=mx上一点,且△ABC是以AB为底的等腰直角三角形,求m值;
答案详解
1.[答案详解]C.
2.[答案详解]因为k<
0,b>
0,所以图象经过一二四象限,所以不经过第三象限.C.
3.[答案详解]∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.
4.[答案详解]C.
5.[答案详解]因为k<
0,kb<
0,所以b>
0.所以图象经过一二四象限.C.
6.[答案详解]图象y=-2(x+m)+1=-2x=7,m=-3,所以直线应向右平移3个单位.选A.
7.[答案详解]C.
8.[答案详解]当x+2=3x-2时,2x=4,x=2,所以x<
2.B.
9.[答案详解]B.
10.[答案详解]由图象可知:
A的横坐标、纵坐标均小于B的横坐标、纵坐标,所以a<
0,b<
0,所以选B.
11.[答案详解]将点A(m,3)代入y=2x得,2m=3,解得,m=
,∴点A的坐标为(
,3),
∴由图可知,不等式2x≥ax+4的解集为x≥
.故选A.
12.[答案详解]∵直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,
∴关于x的不等式﹣x+m>nx+4n>0的解集为x<﹣2,
∴关于x的不等式﹣x+m>nx+4n>0的整数解为﹣3,故选D.
13.[答案详解]当-x+3+m=2x+4时,3x=m-1,
因为x>
0,y>
0,所以m>
1.选择C.
14.[答案详解]当y=kx-2经过A点时,k=-3;
当y=kx-2讲过B点时,k=1.所以k≤-3或k≥1.所以选择C.
15.[答案详解]当y=0时,
x-
=0,解得=1,∴点E的坐标是(1,0),即OE=1.
∵OC=4,∴EC=OC-OE=4-1=3,点F的横坐标是4,∴y=
×
4-
=2,即CF=2.
∴△CEF的面积=·
CE·
CF=×
3×
2=3.故选B.
16.[答案详解]调进物资的速度是60÷
4=15(吨/时),
当在第4小时时,库存物资应该有60吨,在第8小时时库存20吨,
所以调出速度是
=25(吨/时),
所以剩余的20吨完全调出需要20÷
25=0.8(小时).
故这批物资从开始调进到全部调出需要的时间是8+0.8=8.8(小时).故选:
B.
17.[答案详解]
18.[答案详解]由图2可知,AC=3,BC=4,所以AB=5.所以PD最大=
所以图象经过(3,
),(7,0).设直线y=kx+b,
当x=5时,y=1.2.所以选A.
19.[答案详解]∵点A的坐标是(0,1),∴OA=1.∵点B在直线y=
x上,
∴OB=2,∴OA1=4,∴OA2=16,得出OA3=64,∴OA4=256,
∴A4的坐标是(0,256).故选C.
20.[答案详解]
21.[答案详解]根据题意得:
x≥0且x+1≠0,解得x≥0,且x≠-1.
22.[答案详解]m2-4m-4=1,m2-4m-5=0.(m-5)(m+1)=0,m=5或m=-1,因为m-5≠0,所以m=-1.减小.
23.[答案详解]因为k+3>
0,所以k>
-3,因为2k-10≤0,所以k≤5.所以-3≤k≤5.
24.[答案详解]因为k<
0,所以y随x的增大而减小,当x1<
x2时,y1>
y2,所以(x1-x2)(y1-y2)<
0.所以t<
0.
25.[答案详解]因为
所以
,所以
26.[答案详解]y=-2x-2;
DB=DC,OD=OD推出直角△DOB和△DOC全等;
推出OB=OC;
推出C(-1,0);
带入A、B坐标,求出AB直线y=-2x+2,所以CD直线y=-2x+b;
带入C(-1,0),解出CD直线y=-2x-2
27.[答案详解]当线段AB最短时:
AB⊥直线,∴AB直线的斜率k=-1∴AB直线方程:
y-0=-1×
(x+2)即y=-x-2
∴y=x-4和y=-x-2交点B坐标:
两方程相加:
2y=-6,y=-3∴x=y+4=-3+4=1∴B坐标(1,-3)
28.[答案详解]如图,直线y=kx+b(k>0)与y轴交于B点,则OB=b1,直线y=mx+n(m<0)与y轴交于C,则OC=b﹣n,∵△ABC的面积为4,∴OA•OB+
∴
解得:
b﹣n=4.
故答案为4.
29.[答案详解]由图象可知,此时-2<
x<
-1.
30.[答案详解]当k>0时,此函数是增函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=3;
当x=4时,y=6,
∴
,解得
,∴b=2;
当k<0时,此函数是减函数,∵当1≤x≤4时,3≤y≤6,∴当x=1时,y=6;
当x=4时,y=3,
,∴b=﹣7.故答案为:
2或﹣7.
31.[答案详解]∵过点(﹣1,7)的一条直线与直线
平行,设直线AB为y=﹣x+b;
把(﹣1,7)代入y=﹣x+b;
得7=+b,解得:
b=
,∴直线AB的解析式为y=﹣x+
,
令y=0,得:
0=﹣x+
,解得:
x=
,∴0<x<
的整数为:
1、2、3;
把x等于1、2、3分别代入解析式得4、
、1;
∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).
故答案为(1,4),(3,1).
32.[答案详解]当x+3=-2x+1时,
所以当
所以y的最大值为
33.[答案详解]甲跑8m用了2s,速度为8/2=4m/s;
乙跑500m用了100s,速度为500/100=5m/s
乙追上甲用了a=8/(5-4)=8s;
甲用500/4=125s跑到终点,c=125s,b=500m.b=100*5-102*4=92m
所以正确的是
(1)
(2)(3).
34.[答案详解]因为
所以
35.[答案详解]解:
设y-2=k(2x+3),将x=1,y=12代入得:
12-2=5k,k=2,所以y-2=2(2x+3),y=4x+8.
36.[答案详解]
①0≤x<3时,设y=mx,则3m=15,解得m=5,所以,y=5x,
②3≤x≤12时,设y=kx+b,
∵函数图象经过点(3,15),(12,0),∴
当y=5时,由5x=5得,x=1,x=9,
所以,当容器内的水量大于5升时,时间x的取值范围是1<x<9.
37.[答案详解]
(1)由运往A地的水仙花x(件),则运往C地3x件,运往B地(80-4x)件,由题意得
y=20x+10(80-4x)+45x,y=25x+8000
(2)∵y≤12000,∴25x+8000≤12000,解得:
x≤160
∴总运费不超过12000元,最多可运往A地的水仙花160件.
38.[答案详解]
(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
根据题意得,30x+50(100﹣x)=3500,
解得x=75,100﹣x=100﹣75=25。
答:
应购进A型台灯75盏,B型台灯25盏;
(2)设商场销售完这批台灯可获利y元,
则
。
∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,解得x≥25。
∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×
25+2000=1875(元)。
商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元。
39.[答案详解]
(1)200米;
(2)y=200x-1000;
(3)600米
41.[答案详解]
(1)设甲商品的进价为x元,乙商品的进价为y元,由题意,得
商品的进价为40元,乙商品的进价为80元。
(2)设购进甲种商品m件,则购进乙种商品(100﹣m)件,由题意,得
∵m为整数,∴m=30,31,32。
∴有三种进货方案:
方案1,甲种商品30件,乙商品70件;
方案2,甲种商品31件,乙商品69件;
方案3,甲种商品32件,乙商品68件。
设利润为W元,由题意,得
∵k=﹣10<0,∴W随m的增大而减小。
∴m=30时,W最大=4700。
42.[答案详解]
(1)35,x+5;
20,0.5x+15
(2)两个气球能位于同一高度.根据题意,x+5=0.5x+15,解得x=20.有x+5=25.
此时,气球上升了20min,都位于海拔25m的高度.
(3)当30≤x≤50时,由题意,可知1号气球所在位置的海拔始终高于2号气球,
设两个气球在同一时刻所在位置的海拔相差ym,即y=(x+5)-(0.5x+15)=0.5x-10.
∵0.5>
0,∴y随x的增大而增大.∴当x=50时,y取得最大值15.
两个气球所在位置的海拔最多相差15m.
43.[答案详解]
44.[答案详解]
(1)设A品牌计算机的单价为x元,B品牌计算机的单价为y元,则由题意可知:
.答:
A,B两种品牌计算机的单价分别为30元,32元.
(2)由题意可知:
,即
当
时,
;
当
(3)当购买数量超过5个时,
①当
即当购买数量超过5个而不足30个时,购买A品牌的计算机更合算;
②当
即当购买数量为30个时,购买两种品牌的计算机花费相同;
③当
即当购买数量超过30个时,购买B品牌的计算机更合算。
45.[答案详解]
(1)设A市运往C市机器x台(应该是这样吧).那A运往D为(12-X)台.B运往C(10-X)台.B运往D(X-4)台.
Y=400X+800(12-X)+300(10-X)+500(X-4)=-200X+10
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 一次函数 八年 级数 一次 函数 综合 提高 答案