专题训练直角三角形斜边上中线Word下载.docx
- 文档编号:20363965
- 上传时间:2023-01-22
- 格式:DOCX
- 页数:8
- 大小:124.79KB
专题训练直角三角形斜边上中线Word下载.docx
《专题训练直角三角形斜边上中线Word下载.docx》由会员分享,可在线阅读,更多相关《专题训练直角三角形斜边上中线Word下载.docx(8页珍藏版)》请在冰豆网上搜索。
性质:
直角三角形斜边上的中线等于斜边的一半.
定理的证明
证明:
直角三角形斜边上的中线等于斜边的一半.
二、性质的证明
1、证明线段相等
例1、如图4,在△ABC中,∠BAC=90°
,延长BA到D点,使
,点E、F分别为边BC、AC的中点。
(1)求证:
DF=BE;
(2)过点A作AG∥BC,交DF于G。
求证:
AG=DG。
2、证明角相等
例2、已知,如图5,在△ABC中,∠BAC>
90°
,BD、CE分别为AC、AB上的高,F为BC的中点,求证:
∠FED=∠FDE。
例3、已知:
如图6,在△ABC中,AD是高,CE是中线。
DC=BE,DG⊥CE,G为垂足。
(1)G是CE的中点;
(2)∠B=2∠BCE。
3、证明线段的倍分及和差关系
例4、如图7,在△ABC中,∠C=2∠B,D是BC上的一点,且AD⊥AB,点E是BD的中点,连AE。
(1)∠AEC=∠C;
(2)求证:
BD=2AC。
例5、如图8,在梯形ABCD中,AB∥CD,∠A+∠B=90°
,E、F分别是AB、CD的中点。
。
4、证明线段垂直
例6、如图9,在四边形ABCD中,AC⊥BC,BD⊥AD,且AC=BD,M、N分别是AB、DC边上的中点。
MN⊥DC。
5、证明特殊的几何图形
例7、如图10,将Rt△ACB沿直角边AC所在直线翻折180°
得到Rt△ACE,点D与点F分别是斜边AB、AE的中点,连CD、CF,则四边形ADCF为菱形.请给予证明.
强化训练
1、如图,在锐角三角形ABC中,AD⊥BC于D,E、F、G分别是AC、AB、BC的中点。
求证:
四边形OEFG是等腰梯形。
2、如图所示,BD、CE是三角形ABC的两条高,M、N分别是BC、DE的中点
MN⊥DE
3、已知梯形ABCD中,∠B+∠C=90o,EF是两底中点的连线,试说明AB-AD=2EF
4、如图,四边形ABCD中,∠DAB=∠DCB=90o,点M、N分别是BD、AC的中点。
MN、AC的位置关系如何?
证明你的猜想。
5、过矩形ABCD对对角线AC的中点O作EF⊥AC分别交AB、DC于E、F,点G为AE的中点,若∠AOG=30o
3OG=DC
6、如图所示;
过矩形ABCD的顶点A作一直线,交BC的延长线于点E,F是AE的中点,连接FC、FD。
∠FDA=∠FCB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 训练 直角三角形 斜边 中线