多水平统计模型 第10章Word格式文档下载.docx
- 文档编号:20180561
- 上传时间:2023-01-17
- 格式:DOCX
- 页数:15
- 大小:194.51KB
多水平统计模型 第10章Word格式文档下载.docx
《多水平统计模型 第10章Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《多水平统计模型 第10章Word格式文档下载.docx(15页珍藏版)》请在冰豆网上搜索。
becausethemeasurementerrorscannotbeassumedtobeindependent.Anotherwayofviewingthisistosaythattheprocessofmeasurementitselfhaschangedtheindividualbeingmeasured,sothattheunderlyingtruevaluehasalsochanged.
Thesecondproblemisthatwehavetodefineasuitablepopulation.Thedefinitionofreliabilityispopulationdependent,sothatforexample,ifthemeasurementerrorvariance
remainsconstantbutthepopulationheterogeneityofthetruevaluesincreasesthenthereliabilitywillincrease.Thus,thereliabilitymaybelowerwithinpopulationsubgroups,definedbysocialstatussay,thaninthepopulationasawhole.Inparticular,thereliabilityofatestscoremaybesmallerwithinlevel2units,sayschools,thanacrossallstudents.
Inthischapterweshallassumethatthevariancesandcovariancesofthemeasurementerrorsareknown,orratherthatsuitableestimatesexists.Thetopicofmeasurementerrorestimationisacomplexone,andthereareingeneralnosimplesolutions,exceptwheretheassumptionofindependenceoferrorsonrepeatedmeasuringcanbemade.Thecommonprocedure,especiallyineducation,ofusing‘internal’measuresbaseduponcorrelationalpatternsoftestorscaleitems,isunsatisfactoryforanumberofreasonsandmayoftenresultinreliabilityestimateswhicharetoohigh.EcobandGoldstein(1983)discusstheseandproposesomealternativeestimationprocedures.McDonald(1985)andotherauthorsdiscusstheexplorationandestimationofmeasurementerrorvarianceswithinastructuralequationmodel,whichhasmuchincommonwiththesuggestionsofEcobandGoldstein(1983).Becauseestimatesofmeasurementerrorvariancearegenerallyimpreciseitisusefultostudytheeffectsofvaryingthemandwewillillustratethisinexamples
10.2Measurementerrorsinlevel1variables
Weuseatwolevelmodeltoshowhowmeasurementerrorscanbeincorporatedintoananalysis.AfullderivationisgiveninAppendix10.1.Wewriteforthetruemodel
(10.3)
wherefornowweassumethattheexplanatoryvariablesfortherandomvariablesaremeasuredwithouterrorwhichwillbetrueforvariancecomponentmodels.Weassumethatitisthistruemodelforwhichwewishtomakeestimates.Insomesituations,forexamplewherewewishsimplytomakeapredictionforaresponsevariablebaseduponobservedvaluesthenitisappropriatetotreatthesewithoutcorrectingformeasurementerrors.Ifwewishtounderstandthenatureofanyunderlyingrelationships,however,werequireestimatesfortheparametersofthetruemodel.
Fortheobservedvariables(10.3)gives
(10.4)
InAppendix10.1weshowthatthefixedeffectsareestimatedby
(10.5)
where
isthecovariancebetweenthemeasurementerrorsforexplanatoryvariables
forthei-thlevel1unit.Thelastexpressionin(10.5)isacorrectionmatrixforthemeasurementerrorsandhaselementswhichareweightedaveragesofthecovariancesofthemeasurementerrorsforeachleveloverallthelevel1unitsinthesamplewiththeweightsbeingthediagonalelementsof
.Invariancecomponentmodelsthisisasimpleaverageoverthelevel1units,andinthecommoncasewherethecovariancematrixofthemeasurementerrorsisassumedtobeconstantoverlevel1unitswehave
(10.6)
AnapproximationtothecovariancematrixoftheestimatesisgiveninAppendix10.1asisanexpressionfortheestimationoftherandomparameters.Fortheconstantmeasurementerrorcovariancecasewithnomeasurementerrorsintheresponsevariablethiscovariancematrixisgivenby
(10.7)
andintheestimationoftherandomparameterstheterm
issubtractedfrom
ateachiteration.Itisimportantinsomeapplicationstoallowthemeasurementerrorvariancestovaryasafunctionofexplanatoryvariables.Forexample,inperinatalstudies,themeasurementofgestationlengthmaybequiteaccurateforsomepregnancieswherecarefulrecordsarekeptbutlesssoinothers.
WheretheexplanatoryvariableshaverandomcoefficientstheaboveresultsaremodifiedsomewhatandthedetailsaregiveninAppendix10.1.
10.3Measurementerrorsinhigherlevelvariables
Wherevariablesaredefinedatlevel2orabovewithmeasurementerrorswehaveanalogousresults,withdetailsgiveninAppendix10.1.Thusthecorrectiontermtobeusedinadditionto
withaconstantmeasurementerrorcovariancematrixina2-levelmodelis
(10.8)
isavectorofonesoflengthnand
isthej-thblockofV.
Acaseofparticularinterestiswherethelevel2variableisanaggregationofalevel1variable.Woodhouseetal(1995)considerthiscaseindetailandgivedetailedderivations.Considerthecasewherewehavealevel2variablewhichisthemeanofalevel1variable
Thevarianceoverthewholesampleisthereforegivenby
(10.9)
whereweassumeconstantvariancesandcovarianceswithinlevel2unitsforthe
.Thenumberoflevel1unitsactuallymeasuredinthej-thlevel2unitis
outofatotalnumberofunits
.Straightforwardestimatesoftheparameterscanbeobtainedbycarryingoutavariancecomponentsanalysiswith
asresponse,fittingonlytheoverallmeaninthefixedpart,sothatthecovarianceisthelevel2varianceestimate.
Forthetruevalueswehaveananalogousresultwherenowweconsiderthevarianceofthemeanofthetruevaluesforallthelevel1unitsineachlevel2unit.Thereare,ineffect,twosourcesoferrorin
.Thereistheerrorinherentinthelevel1measurement
whichisaveragedacrossthelevel1unitsineachlevel2unitandthereisthesamplingerrorwhichoccurswhen
thatisnotalltheunitsinthelevel2unitaremeasured.Thusthetruevalueistheaverageforallthelevel1unitsineachlevel2unitofthetruelevel1measurements.Sincethemeasurementerrorsareassumedindependentwehave
(10.10)
Thisgivesusthefollowingexpressionfortherequiredmeasurementerrorvariancefortheaggregatedvariable
(10.11)
wherethereliability
isestimatedfromthelevel1variation.
Ifboththelevel1observedvariableanditsaggregateareincludedasexplanatoryvariablesthenclearlytheirmeasurementerrorsarecorrelatedandthecorrelationisgivenby
.
Intheexpressionsforthecorrectionmatrices,wehaveconsideredtheseparatecontributionsfromlevels1and2.Wherethereisa‘cross-level’correlationbetweenmeasurementerrorsasabovethenweaddthelevel1variableto
using(10.11)forthecovariancetogetherwithazerovariance.Themeasurementerrorvarianceforthelevel1explanatoryvariablebecomesacomponentof
.AdetailedderivationoftheseresultsisgivenbyWoodhouseetal(1995).
Table10.1ElevenyearNormalisedmathematicsscorerelatedto8yearscore,genderandsocialclassfordifferenteightyearscorelevel1reliabilities;
adjustingformeasurementerrorsatlevel1only.
Parameter
A(R1=1.0)
B(R1=0.9)
C(R1=0.8)
Fixed
Estimate(s.e.)
Intercept
0.14
0.11
0.08
8yearscore
0.095(0.0037)
0.107(0.0042)
0.122(0.0050)
Gender
-0.044(0.050)
-0.043(0.052)
NonManual
0.15(0.06)
0.11(0.06)
0.06(0.06)
Random
0.081(0.023)
0.081(0.024)
0.082(0.024)
0.423(0.023)
0.374(0.023)
0.311(0.025)
Intra-schoolcorrn.
0.16
0.18
0.21
10.4A2-levelexamplewithmeasurementerroratbothlevels.
WeusetheJuniorSchoolProjectdatareadingscoreattheageofelevenyearsasourresponsewiththeeightyearmathematicsscoreaspredictor,fittingalsosocialclass(NonmanualandManual)andgender.ThescoresatageelevenhavebeentransformedtohaveastandardNormaldistribution.Inadditionweshallallowformeasurementerrorsinboththetestscores.Thereareatotalof728studentsin48schoolsinthisanalysis.
Intheoriginalanalysesofthesedata(Mortimoreetal,1988)reliabilitiesarenotgiven,andforthereasonsgivenaboveareunlikelytobewellestimated.Forthepurposeofouranalysesweinvestigatearangeofreliabilitiesfrom0.8to1.0tostudytheeffectofintroducingincreasingamountsof
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 多水平统计模型 第10章 水平 统计 模型 10