中考必做 36题文档格式.docx
- 文档编号:20170226
- 上传时间:2023-01-17
- 格式:DOCX
- 页数:19
- 大小:520.60KB
中考必做 36题文档格式.docx
《中考必做 36题文档格式.docx》由会员分享,可在线阅读,更多相关《中考必做 36题文档格式.docx(19页珍藏版)》请在冰豆网上搜索。
,求点M的坐标.
5.(2012•宁波)如图,二次函数y=ax2+bx+c的图象交x轴于A(-1,0),B(2,0),交y轴于C(0,-2),过A,C画直线.
(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.
①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
②若⊙M的半径为
6.(2011•遵义)已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.
(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;
(2)如图
(1),连接AB,在题
(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?
若不存在,请说明理由;
(3)如图
(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
7.(2011•无锡)如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个单位的速度,沿△OAB的边0A、AB、B0作匀速运动;
动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t秒,当点P运动到O时,它们都停止运动.
(1)当P在线段OA上运动时,求直线l与以P为圆心、1为半径的圆相交时t的取值范围;
(2)当P在线段AB上运动时,设直线l分别与OA、OB交于C、D,试问:
四边形CPBD是否可能为菱形?
若能,求出此时t的值;
若不能,请说明理由,并说明如何改变直线l的出发时间,使得四边形CPBD会是菱形.
8.(2011•鸡西)已知直线
与x轴、y轴分别交于A、B两点,∠ABC=60°
,BC与x轴交于点C.
(1)试确定直线BC的解析式.
(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围.
(3)在
(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?
若存在,请直接写出N点的坐标;
若不存在,请说明理由.
9.(2012•滨州)如图1,l1,l2,l3,l4是一组平行线,相邻2条平行线间的距离都是1个单位长度,正方形ABCD的4个顶点A,B,C,D都在这些平行线上.过点A作AF⊥l3于点F,交l2于点H,过点C作CE⊥l2于点E,交l3于点G.
(1)求证:
△ADF≌△CBE;
(2)求正方形ABCD的面积;
(3)如图2,如果四条平行线不等距,相邻的两条平行线间的距离依次为h1,h2,h3,试用h1,h2,h3表示正方形ABCD的面积S.
10.(2012•德州)如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?
并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?
若存在,求出这个最小值;
11.(2011•本溪)如图1,在平面直角坐标系中,抛物线过原点O,点A(10,0)和点B(2,2),在线段OA上,点P从点O向点A运动,同时点Q从点A向点O运动,运动过程中保持AQ=2OP,当P、Q重合时同时停止运动,过点Q作x轴的垂线,交直线AB于点M,延长QM到点D,使MD=MQ,以QD为对角线作正方形QCDE(正方形QCDE随点Q运动).
(1)求这条抛物线的函数表达式;
(2)设正方形QCDE的面积为S,P点坐标(m,0)求S与m之间的函数关系式;
(3)过点P作x轴的垂线,交抛物线于点N,延长PN到点G,使NG=PN,以PG为对角线作正方形PFGH(正方形PFGH随点P运动),当点P运动到点(2,0)时,如图2,正方形PFGH的边GF和正方形QCDE的边EQ落在同一条直线上.
①则此时两个正方形中在直线AB下方的阴影部分面积的和是多少?
②若点P继续向点A运动,还存在两个正方形分别有边落在同一条直线上的情况,请直接写出每种情况下点P的坐标,不必说明理由.
12.(2012•陕西)如图,正三角形ABC的边长为
(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求
(1)中作出的正方形E′F′P′N′的边长;
(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.
13.(2012•上海)如图,在半径为2的扇形AOB中,∠AOB=90°
,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=1时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?
如果存在,请指出并求其长度,如果不存在,请说明理由;
(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.
14.(2012•义乌市)在锐角△ABC中,AB=4,BC=5,∠ACB=45°
,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.
15.(2012•青海)如图(*),四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°
,且EF交正方形外角平分线CF于点F.请你认真阅读下面关于这个图的探究片段,完成所提出的问题.
(1)探究1:
小强看到图(*)后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等(一个是直角三角形,一个是钝角三角形),考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM后尝试着去证△AEM≌EFC就行了,随即小强写出了如下的证明过程:
证明:
如图1,取AB的中点M,连接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵点E,M分别为正方形的边BC和AB的中点
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分线
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:
小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.
(3)探究3:
小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?
若成立请你完成证明过程给小强看,若不成立请你说明理由.
16.(2012•南京)如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB是⊙O上关于点A、B的滑动角.
(1)已知∠APB是⊙O上关于点A、B的滑动角,
①若AB是⊙O的直径,则∠APB=______°
;
②若⊙O的半径是1,
,求∠APB的度数;
(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.
17.(2012•广州)如图,抛物线
与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.
(1)求点A、B的坐标;
(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;
(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.
(2012•南昌)
19.(2011•上海)在Rt△ABC中,∠ACB=90°
,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,
(1)如图1,当点E与点C重合时,求CM的长;
(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;
(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.
20.(2012•黄冈)如图,已知抛物线的方程
与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.
(1)若抛物线C1过点M(2,2),求实数m的值;
(2)在
(1)的条件下,求△BCE的面积;
(3)在
(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;
(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?
若存在,求m的值;
21.(2012•南通)如图,经过点A(0,-4)的抛物线
与x轴相交于B(-2,0),C两点,O为坐标原点.
(2)将抛物线
,再向左平移m(m>0)个单位长度得到新抛物线,若新抛物线的顶点P在△ABC内,求m的取值范围;
(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.
22.(2012•海南)如图,顶点为P(4,-4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,
(1)求该二次函数的关系式;
(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:
①证明:
∠ANM=∠ONM;
②△ANO能否为直角三角形?
如果能,请求出所有符合条件的点A的坐标;
如果不能,请说明理由.
23.(2012•福州)如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在
(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
24.(2012•云南)如图,在平面直角坐标系中,
交x轴于点,并与直线相交于A、B两点.
(1)求抛物线的解析式(关系式);
(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;
(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?
若存在,请求出点M的坐标;
25.(2012•无锡)对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1-x2|+|y1-y2|叫做P1、P2两点间的直角距离,记作d(P1,P2).
(1)已知O为坐标原点,动点P(x,y)满足d(O,P)=1,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(2)设P0(x0,y0)是一定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0,Q)的最小值叫做P0到直线y=ax+b的直角距离.试求点M(2,1)到直线y=x+2的直角距离.
26.(2012•河北)如图1和2,
探究:
如图1,AH⊥BC于点H,则AH=______,AC=______,△ABC的面积S△ABC=______;
拓展:
如图2,点D在AC上(可与点A,C重合),分别过点A、C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n(当点D与点A重合时,我们认为S△ABD=0)
(1)用含x,m,n的代数式表示S△ABD及S△CBD;
(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;
(3)对给定的一个x值,有时只能确定唯一的点D,指出这样的x的求值范围.
发现:
请你确定一条直线,使得A、B、C三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.
27.(2012•衢州)课本中,把长与宽之比为
的矩形纸片称为标准纸.请思考解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明.
(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:
沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:
沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;
第三步:
沿直线DM折叠(如图2丙),此时点G恰好与N点重合.
请你探究:
矩形纸片ABCD是否是一张标准纸?
请说明理由.
(3)不难发现:
将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,
,问第5次对开后所得标准纸的周长是多少?
探索直接写出第2012次对开后所得标准纸的周长.
…
28.(2011•江西)某数学兴趣小组开展了一次活动,过程如下:
设∠BAC=θ(0°
<θ<90°
)小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.
活动一:
如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.
数学思考:
(1)小棒能无限摆下去吗?
答:
______.(填“能“或“不能”)
(2)设AA1=A1A2=A2A3=1.
①θ=______度;
②若记小棒A2n-1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,…),求出此时a2,a3的值,并直接写出an(用含n的式子表示).
活动二:
如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.
(3)若已经向右摆放了3根小棒,则θ1=______,θ2=______,θ3=______(用含θ的式子表示);
(4)若只能摆放4根小棒,求θ的范围.
29.(2012•烟台)
(1)问题探究
如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.
(2)拓展延伸
①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?
若成立,给出证明;
若不成立,说明理由.
②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?
(要求:
在图3中补全图形,注明字母,直接写出结论,不需证明)
30.(2012•吉林)问题情境
如图,在x轴上有两点A(m,0),B(n,0)(n>m>0).分别过点A,点B作x轴的垂线,交抛物线y=x2于点C、点D.直线OC交直线BD于点E,直线OD交直线AC于点F,点E、点F的纵坐标分别记为yE,yF.
特例探究
填空:
当m=1,n=2时,yE=______,yF=______;
当m=3,n=5时,yE=______,yF=______.
归纳证明
对任意m,n(n>m>0),猜想yE与yF的大小关系,并证明你的猜想.
拓展应用
(1)若将“抛物线y=x2”改为“抛物线y=ax2(a>0)”,其他条件不变,请直接写出yE与yF的大小关系;
(2)连接EF,AE.当S四边形OFEA=3S△OFE时,直接写出m与n的关系及四边形OFEA的形状.
31.(2012•天津)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.
(Ⅰ)如图①,当∠BOP=30°
时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).
32.(2012•南宁)已知点A(3,4),点B为直线x=-1上的动点,设B(-1,y).
(1)如图1,若点C(x,0)且-1<x<3,BC⊥AC,求y与x之间的函数关系式;
(2)在
(1)的条件下,y是否有最大值?
若有,请求出最大值;
若没有,请说明理由;
(3)如图2,当点B的坐标为(-1,1)时,在x轴上另取两点E,F,且EF=1.线段EF在x轴上平移,线段EF平移至何处时,四边形ABEF的周长最小?
求出此时点E的坐标.
33.(2012•自贡)如图,抛物线l交x轴于点A(-3,0)、B(1,0),交y轴于点C(0,-3).将抛物线l沿y轴翻折得抛物线l1.
(1)求l1的解析式;
(2)在l1的对称轴上找出点P,使点P到点A的对称点A1及C两点的距离差最大,并说出理由;
(3)平行于x轴的一条直线交抛物线l1于E、F两点,若以EF为直径的圆恰与x轴相切,求此圆的半径.
34.(2012•安徽)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.
(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)
(2)当h=2.6时,球能否越过球网?
球会不会出界?
请说明理由;
(3)若球一定能越过球网,又不出边界,求h的取值范围.
35.(2012•泰州)如图,已知一次函数y1=kx+b图象与x轴相交于点A,的图
.点P(m,n)是一次函数y1=kx+b的图象上的动点.
(1)求k、b的值;
(2)
试问△PAD的面积是否存在最大值?
若存在,请求出面积的最大值及此时点P的坐标;
(3)设m=1-a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围.
36.(2012•武汉)如图1,
点B的坐标为(1,0)直线AB交抛物线C1于另一点C
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:
DE=4:
3,求a的值;
(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考必做 36题 中考 36