电动机进行无功补偿时谐波危害.docx
- 文档编号:20119215
- 上传时间:2023-04-25
- 格式:DOCX
- 页数:12
- 大小:21.16KB
电动机进行无功补偿时谐波危害.docx
《电动机进行无功补偿时谐波危害.docx》由会员分享,可在线阅读,更多相关《电动机进行无功补偿时谐波危害.docx(12页珍藏版)》请在冰豆网上搜索。
电动机进行无功补偿时谐波危害
电动机知识
电动机进行无功补偿时谐波危害
相交流异步电动机具有一系列优点,作为动力设备在各行业中获得极广泛的应用,它在运行中依靠磁场传递进行能量转换来工作,不仅消耗有功功率,也需要无功工率。
属感性负荷,因此功率因数较低,约为0.76~0.89,一般需要并联电容器进行补偿,以提高功率因数,同时也提高了端电压,有利于电动机的起动。
电动机进行无功补偿具有增容、节能、提高出力等优点,经济效益显著,目前已得到推广应用,但在推广中,对某些可能存在的问题(例如谐波的危害等)并没给予足够的重视与研究,上海坤友电气有限公司通过下面实例说明,电动机进行无功补偿时,若条件合适,同样存在因谐波放大而造成的危害,应引起我们的注意。
1.概况
某抽水站,安装运行3台180KW电动机,由于该站地处电网末端,电压较低,电机经常起动困难,为了提高功率因数和电压,用KYLBC自愈式并联电容器(电容器回路中未串联电抗器)进行无功补偿,但是当电容器接入电网运行后,时间不长,就出现电容器损坏现象,随着运行时间增加,损坏的电容器越来越多,当时,怀疑电容器质量不良,就更换了电容器,但更后,仍出现同样问题,有关方面才怀疑是否存在其他原因,向我们提出咨询。
上海坤友电气有限公司根据情况进行分析后认为,虽然该站地处农村,附近没有任何谐波源存在,电动机本身一般不作为谐波负荷处理,也没有见到过电动机进行无功补偿后发生谐波危害的报导,但还是不应排除存在谐波危害的可能,应先进行谐波测试与分析。
2.电动机是产生高次谐波电流的谐波源
为了了解系统谐波情况,在低压母线上仅有3台电动机的运行工况时,进行了谐波测试与分析。
从数据可以看到,谐波电流以3次及17次为主,根据测试数据,进行谐波功率计算后可知,3次谐波功率与基波功率方向相反,而17次谐波功率与基波功率方向相反,由此可判断3次谐波电流系由电源的3次谐波电压所产生,而17次谐波电流则由电动机所产生。
对其他各次谐波进行计算,即可知16次等部分谐波电流亦由电动机所产生,因此电动机是产生高次谐波电流的谐波源,17次及其他各次谐波注入电网,使电网电压波形畸变,其中17次谐波电压高达4.727%,超过了GB/T14549-1993《电能质量公用电网谐波》中不大于4%的限值,同时也导致电压总谐波率达到5.563%,也超过了不大于5%的规定。
3.无功补偿装置投入后产生了谐波放大现象
在低压母线运行着3台电动机的工况下投入无功补偿装置,对电容器回路进行谐波测试,发现由于谐波放大,通过电容器的高次谐波电流很大。
所列数据不难看出,无功补偿装置投运后,发生了严重的谐波放大现象,其中16次与17次谐波电流已分别达到基波电流的129.2%与237.1%,而自愈式并联电容器国标中规定,包括谐波电流在内的允许过电流为1.3倍额定电流,因此,这时的谐波电流值是相当大的。
同时,电网的电压波形畸变加剧,低压母线电压的16与17次谐波电压含有率,分别由电容器投入前的1.886%与4.727%,增大到6.998%与11.34%,母线电压总畸变率亦由5.563%增大到14.71%,大大超过谐波国标的有关限制值,谐波电压的增大,说明注入电网的谐波电流也相应增大。
谐波电压的增大,将直接影响连接于该母线的各种电气设备的安全运行,资料表明,电动机在较高的谐波电压作用下,将发热烧坏,寿命缩短。
4.电容器早期损坏的原因
4.1畸变的电压波形使电容器局部放电性能下降
由于谐波的存在,电压波形发生畸变,使电压峰值增高,呈锯齿状尖顶波。
图1所示为实侧的电压波形。
一些试验表明,尖顶波电压易在介质中诱发局部放电,而且因电压变化速率快,引起的局部放电强度也较大,这将对电容器绝缘介质的老化起加速作用。
电容器的局部放电性能一般可用起始放电场强与局放熄灭场强两个参数来表征,若局放熄灭场强低于工作场强那么由于操作过电压所诱发的局部放电就可能在工作场强下不能熄灭,而形成长时间的局部放电。
试验表明,当电源电压含有谐波时,电容器的局部放电起始电压和熄灭电压均相应下降,而且当谐波含量较大,谐波次数越高,下降幅值越大。
虽然自愈式并联电容器国标中对局部放电性能未作明确要求,但是局部放电对绝缘介质的影响是客观存在的,长时间的局部放电,必然加速绝缘介质的老化,使其自愈性能恶化,最终导致电容器损坏。
4.2严重的谐波过电流使电容器损耗功率增加,导致电容器异常发热
Domain:
dnf辅助More:
d2gs2f
在电容器的标准中,允许通过电容器的稳态过电流,应不超过电容器在额定频率,额定正弦电压下产生的电流的1.3倍,这个稳态过电流是由谐波和过电压共同作用的结果。
电压没有超过额定电压,故过电流仅是谐波作用下的结果,现根据实际参数计算其过流情况,根据测试时基波电压为181.5V(相电压)谐波电流为基波电流的304.6%,电容器额定电压400V,三相三角接法,由此可计算得其稳态过电流对额定电流过电流对电容器的影响主要是热效应,而热效应决定于损耗功率的大小,损耗功率与通过的电流平方成正比。
根据电容器允许过电流条件,可计算得实际损耗增加倍率S:
即电容器的实际损耗功率为允许值的3.76倍,因此,在如此大的损耗功率下,电容器将异常发热,必然使其绝缘迅速老化而早期损坏。
5.小结
5.1电动机会产生高次谐波,用电容器进行无功补偿时,有可能会产生谐波放大现象,对此应引起我们的注意;
5.2电动机进行无功补偿时,应进行谐波测试与分析,以便采取相应的技术指施,防止谐波危害的发生。
·最小纳米电动机问世
·保养电动机延长覆膜机使用寿命的方法
·无功就地补偿技术
·对电动机进行无功补偿应细致谐波危害
·新型的电子式软起动器
·关于节电器的工作原理
·电动机的额定电压
·电动机的额定转速
·变频器运行中存在的问题及对策
匿名
随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。
在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。
在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。
在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。
ACC800变频器是ACS800系列中具有提升机应用程序的重要一员,
它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。
本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。
1DTC控制技术
DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。
其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。
定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。
在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度
。
直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。
2防止溜钩控制
作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。
溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。
电磁制动器从通电到断电(或从断电到通电)
需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。
防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。
零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。
直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动转矩,维持重物在空中的停止状态,以保证电磁制动器在释放过程中不会发生溜钩。
3系统硬件配置
梅钢冷轧桥式起重机上应用的ACS800变频器调速系统由电控柜,大小车变频控制柜,起升变频控制柜,联动控制台等组成。
主起升采用1台ACC800变频器驱动1台起升专用电动机,并在电动机轴尾安装1台速度编码器,做速度反馈用。
该速度编码器用来提高低速状态下电动机模型的速度和转矩计算精度,保证转矩验证,开闭闸等功能。
主起升采用斩波器加制动电阻实现制动功能,斩波器与制动电阻串联后接入变频器整桥与逆变桥之间的直流回路中,并由变频器根据中间直流回路电压高低控制斩波器接通与否(即控制制动电阻的投切)。
变频器配有RPBA201接口卡件,提供标准的Profibus2DP现场总线接口,用于与PLC通信控制,并接收PLC发来的开,停车命令和速度设定值等控制参数。
4起升变频器功能参数设置
ABB变频器在出厂时,所有功能码都已设置。
但是,起重机变频调速系统的要求与工厂设定值不尽相同,所以,ACC800中一些重要的功能参数需要重新设定。
(1)起动数据(参数组99)
参数99102(用于提升类传动,但不包括主/从总线通信功能):
CRANE;参数99104(电动机控制模式):
DTC(直接转矩控制);参数99105~99109(电动机常规铭牌参数):
按照电动机的铭牌参数输入。
(2)数字输入(参数组10)
参数10101~10113(数字输入接口预置参数):
按照变频器外围接口定义进行设置,限于篇幅,不再赘述。
(3)限幅(参数组20)
参数20101(运行范围的最小速度):
-1000r/min(根据实际电动机参数进行设定);参数20102(运行范围的最大速度):
1000r/min(根据实际电动机参数进行设定);参数20103(最大输出电流):
120%;参数20104(最大正输出转矩):
150%;参数20104(最大负输出转矩):
-150%;参数20106(直流过压控制器参数):
OFF(本例中ACC800变频器使用了动力制动方式,此参数设为OFF后,制动斩波器才能投入运行)。
(4)脉冲编码器(参数组50)
参数50101(脉冲编码器每转脉冲数):
1024;参数50103(编码器故障):
FAULT(如果监测到编码器故障或编码器通信失败时,ACC800变频器显示故障并停机)。
(5)提升机(参数组64)
参数64101(独立运行选择):
FALSE;64103(高速值1):
98%;64106(给定曲线形状):
0(直线);参数64110(控制类型选择):
FBJOYSTICK.(6)逻辑处理器(参数组65)
参数65101(电动机停止后是否保持电动机磁场选择):
TRUE(在电动机停止后保持电动机磁场为"ON");参数65102(ON脉冲延时时间):
5s.(7)转矩验证(参数组66)
参数66101(转矩验证选择):
TRUE(转矩验证有效,要求有脉冲编码器)。
(8)机械制动控制(参数组67)
参数67106(相对零速值):
3%;参数67109(起动转矩选择器):
AUTOTQMEM(自动转矩记忆)。
(9)给定处理器(参数组69)
参数69101(对应100%给定设置电动机速度):
980r/min(根据实际电动机参数进行设定);参数69102(正向加速时间):
3s;参数69103(反向加速时间):
3s;参数69104(正向减速时间):
3s;参数69105(反向减速时间):
3s.(10)可选模块(参数组98)
参数98101(脉冲编码器模块选择):
RTAC2SLOT2(脉冲编码器模块类型为RTAC,连接接口为传动控制单元的选件插槽2);参数98102(通信模块选择):
FIELDBUS(激活外部串行通信并选择外部串行通信接口)。
5试运行
变频调速系统的功能参数设定完后,就可进行系统试运行。
应先在变频器操作盘上进行速度给定,手动起动变频器,让起升电动机空载运转一段时间,并且这种试运行可以在5,10,15,20,25,35,50Hz等几个频率点进行,注意观察电动机的运转方向是否正确,转速是否平稳,显示数据是否正确,温升是否正常,加减速是否平滑等
。
单台变频器试运行正确后,再接入脉冲编码器模块进行速度闭环调试,试运行起升机构变频调速系统。
起升变频器手动运行无误后,就可接入PLC控制系统,进行整机联调。
整机联调中,关键要注意观察变频器起动与停止时,主起升机械制动器的开闭反应是否快速,钩头是否存在溜钩现象等。
其次还要注意观察钩头在下降过程中,制动单元和制动电阻投运后,其温升是否正常。
在重物下放过程中,重物的势能会释放出来,此时电动机将工作在反向发电状态。
在钩头下降过程中,电动机通过逆变桥向变频器中间直流回路充电,当直流回路的电压高于变频器系统设定值时,变频器控制斩波器接通,进而使制动电阻投入工作,以消耗变频器中间直流回路多余的电能,确保变频器中间直流回路电压稳定在一个特定电压范围内。
随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。
在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。
在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。
在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。
ACC800变频器是ACS800系列中具有提升机应用程序的重要一员,
它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。
本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。
1DTC控制技术
DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。
其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。
定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。
在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度
。
直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。
2防止溜钩控制
作为起重用变频系统,其控制重点之一是在电动机处于回馈制动状态下系统的可靠性("回馈"是指电动机处于发电状态时通过逆变桥向变频器中间直流回路注入电能),尤其需要引起注意的是主起升机构的防止溜钩控制。
溜钩是指在电磁制动器抱住之前和松开之后的瞬间,极易发生重物由停止状态出现下滑的现象。
电磁制动器从通电到断电(或从断电到通电)
需要的时间大约为016s(视起重机型号和起重量大小而定),变频器如过早停止输出,将容易出现溜钩,因此变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生"过流"而跳闸的误动作。
防止溜钩现象的方法是利用变频器零速全转矩功能和直流制动励磁功能。
零速全转矩功能,即变频器可以在速度为零的状态下,保持电动机有足够大的转矩,从而保证起重设备在速度为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,以防止溜钩的发生。
直流制动励磁功能,即变频器在起动之前自动进行直流强励磁,使电动机有足够大的起动转矩,维持重物在空中的停止状态,以保证电磁制动器在释放过程中不会发生溜钩。
3系统硬件配置
梅钢冷轧桥式起重机上应用的ACS800变频器调速系统由电控柜,大小车变频控制柜,起升变频控制柜,联动控制台等组成。
主起升采用1台ACC800变频器驱动1台起升专用电动机,并在电动机轴尾安装1台速度编码器,做速度反馈用。
该速度编码器用来提高低速状态下电动机模型的速度和转矩计算精度,保证转矩验证,开闭闸等功能。
主起升采用斩波器加制动电阻实现制动功能,斩波器与制动电阻串联后接入变频器整桥与逆变桥之间的直流回路中,并由变频器根据中间直流回路电压高低控制斩波器接通与否(即控制制动电阻的投切)。
变频器配有RPBA201接口卡件,提供标准的Profibus2DP现场总线接口,用于与PLC通信控制,并接收PLC发来的开,停车命令和速度设定值等控制参数。
4起升变频器功能参数设置
ABB变频器在出厂时,所有功能码都已设置。
但是,起重机变频调速系统的要求与工厂设定值不尽相同,所以,ACC800中一些重要的功能参数需要重新设定。
(1)起动数据(参数组99)
参数99102(用于提升类传动,但不包括主/从总线通信功能):
CRANE;参数99104(电动机控制模式):
DTC(直接转矩控制);参数99105~99109(电动机常规铭牌参数):
按照电动机的铭牌参数输入。
(2)数字输入(参数组10)
参数10101~10113(数字输入接口预置参数):
按照变频器外围接口定义进行设置,限于篇幅,不再赘述。
(3)限幅(参数组20)
参数20101(运行范围的最小速度):
-1000r/min(根据实际电动机参数进行设定);参数20102(运行范围的最大速度):
1000r/min(根据实际电动机参数进行设定);参数20103(最大输出电流):
120%;参数20104(最大正输出转矩):
150%;参数20104(最大负输出转矩):
-150%;参数20106(直流过压控制器参数):
OFF(本例中ACC800变频器使用了动力制动方式,此参数设为OFF后,制动斩波器才能投入运行)。
(4)脉冲编码器(参数组50)
参数50101(脉冲编码器每转脉冲数):
1024;参数50103(编码器故障):
FAULT(如果监测到编码器故障或编码器通信失败时,ACC800变频器显示故障并停机)。
(5)提升机(参数组64)
参数64101(独立运行选择):
FALSE;64103(高速值1):
98%;64106(给定曲线形状):
0(直线);参数64110(控制类型选择):
FBJOYSTICK.(6)逻辑处理器(参数组65)
参数65101(电动机停止后是否保持电动机磁场选择):
TRUE(在电动机停止后保持电动机磁场为"ON");参数65102(ON脉冲延时时间):
5s.(7)转矩验证(参数组66)
参数66101(转矩验证选择):
TRUE(转矩验证有效,要求有脉冲编码器)。
(8)机械制动控制(参数组67)
参数67106(相对零速值):
3%;参数67109(起动转矩选择器):
AUTOTQMEM(自动转矩记忆)。
(9)给定处理器(参数组69)
参数69101(对应100%给定设置电动机速度):
980r/min(根据实际电动机参数进行设定);参数69102(正向加速时间):
3s;参数69103(反向加速时间):
3s;参数69104(正向减速时间):
3s;参数69105(反向减速时间):
3s.(10)可选模块(参数组98)
参数98101(脉冲编码器模块选择):
RTAC2SLOT2(脉冲编码器模块类型为RTAC,连接接口为传动控制单元的选件插槽2);参数98102(通信模块选择):
FIELDBUS(激活外部串行通信并选择外部串行通信接口)。
5试运行
变频调速系统的功能参数设定完后,就可进行系统试运行。
应先在变频器操作盘上进行速度给定,手动起动变频器,让起升电动机空载运转一段时间,并且这种试运行可以在5,10,15,20,25,35,50Hz等几个频率点进行,注意观察电动机的运转方向是否正确,转速是否平稳,显示数据是否正确,温升是否正常,加减速是否平滑等
。
单台变频器试运行正确后,再接入脉冲编码器模块进行速度闭环调试,试运行起升机构变频调速系统。
起升变频器手动运行无误后,就可接入PLC控制系统,进行整机联调。
整机联调中,关键要注意观察变频器起动与停止时,主起升机械制动器的开闭反应是否快速,钩头是否存在溜钩现象等。
其次还要注意观察钩头在下降过程中,制动单元和制动电阻投运后,其温升是否正常。
在重物下放过程中,重物的势能会释放出来,此时电动机将工作在反向发电状态。
在钩头下降过程中,电动机通过逆变桥向变频器中间直流回路充电,当直流回路的电压高于变频器系统设定值时,变频器控制斩波器接通,进而使制动电阻投入工作,以消耗变频器中间直流回路多余的电能,确保变频器中间直流回路电压稳定在一个特定电压范围内。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电动机 进行 无功 补偿 谐波 危害