基于PLC的城市供热锅炉水温控制系统设计说明Word文档格式.docx
- 文档编号:19974809
- 上传时间:2023-01-13
- 格式:DOCX
- 页数:44
- 大小:1.43MB
基于PLC的城市供热锅炉水温控制系统设计说明Word文档格式.docx
《基于PLC的城市供热锅炉水温控制系统设计说明Word文档格式.docx》由会员分享,可在线阅读,更多相关《基于PLC的城市供热锅炉水温控制系统设计说明Word文档格式.docx(44页珍藏版)》请在冰豆网上搜索。
3.2.1PLC型号的选择11
3.2.2S7-200CPU的选择12
3.2.3EM235模拟量输入/输出模块12
3.2.4热电式传感器12
3.2.5可控硅加热装置简介12
3.3系统整体设计方案和电气连接图13
3.4PLC控制器的设计14
3.4.1控制系统数学模型的建立14
3.4.2PID控制及参数整定14
第四章PLC控制系统的软件设计16
4.1PLC程序设计的方法16
4.2编程软件STEP7--Micro/WIN概述17
4.2.1STEP7--Micro/WIN简单介绍17
4.2.2计算机与PLC的通信18
4.3程序设计18
4.3.1程序设计思路18
4.3.2PID指令向导19
4.3.3控制程序及分析25
第五章组态画面的设计29
5.1组态变量的建立及设备连接29
5.1.1新建项目29
5.2创建组态画面33
5.2.1新建主画面33
5.2.2新建PID参数设定窗口34
5.2.3新建数据报表34
5.2.4新建实时曲线35
5.2.5新建历史曲线35
5.2.6新建报警窗口36
第六章系统测试37
6.1启动组态王37
6.2实时曲线观察38
6.3分析历史趋势曲线38
6.4查看数据报表40
6.5系统稳定性测试42
结束语43
参考文献44
致谢45
摘要
从上世纪80年代至90年代中期,PLC得到了快速的发展,在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。
PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。
PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。
本文介绍了以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;
采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制。
电热锅炉的应用领域相当广泛,在相当多的领域里,电热锅炉的性能优劣决定了产品的质量好坏。
目前电热锅炉的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。
本文分别就电热锅炉的控制系统工作原理,温度变送器的选型、PLC配置、组态软件程序设计等几方面进行阐述。
通过改造电热锅炉的控制系统具有响应快、稳定性好、可靠性高,控制精度好等特点,对工业控制有现实意义。
关键词:
电热锅炉的控制系统温度控制串级控制PLCPID
ABSTRACT
Fromthelastcenturyto90inthemid80'
s,PLChasbeenrapiddevelopmentinthisperiod,PLCcapabilityindealingwithanaloganddigitalcomputingpower,man-machineinterfacecapabilitiesandnetworkcapabilitiesaregreatlyimproved,PLCgraduallyenteringthefieldofprocesscontrol,replacedinsomeapplicationsinthefieldofprocesscontroldominantDCS.PLChastheversatility,easeofuse,wideadaptation,highreliabilityandstronganti-interference,simpletoprogramandsoon.PLCcontrol,especiallyintheindustrialautomationsequencecontroltheposition,intheforeseeablefuture,isnosubstitute.
ThispaperintroducestheboilerasthechargedobjecttotheboilerwatertemperatureofthemainaccusedoftheexportparameterstofurnacetemperatureasdeputyaccusedofparameterstocontroltheheatingresistancewirevoltageparameterstoPLC,controller,constitutesaseriesofboilertemperaturelevelcontrolsystem;
usingPIDalgorithm,theuseofPLCladderprogramminglanguage,programming,boilertemperaturecontrol.
Electricboilersawiderangeofapplications,inaconsiderablenumberoffield,theelectricboilerperformanceadvantagesanddisadvantagesofthedecisionThequalityoftheproduct.Electricboilercontrolsystemscurrentlyusedmostlyforcomputercontrolmicroprocessorcoretechnology,bothtoimprovetheautomationequipmenthaveimprovedthecontrolprecisionequipment.
Thispaperontheheatingboilercontrolsystemworks,selectionoftemperaturetransmitter,PLCconfigurations,theconfigurationsoftwaredesignaspectsweredescribed.Throughthetransformationofelectricboilercontrolsystemhasfastresponse,goodstability,highreliability,controlaccuracyandgoodfeatures,practicalsignificanceforindustrialcontrol.
Keywords:
heatingboilercontrolsystemtemperaturecontrolcascadecontrolPLCPID
第一章绪论
1.1课题背景及研究目的和意义
基于PLC的城市供热锅炉水温控制系统的应用领域相当广泛,电热锅炉的性能优劣决定了产品的质量好坏。
PLC的快速发展发生在上世纪80年代至90年代中期。
在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到了很大的提高和发展。
PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。
[4]
电热锅炉是机电一体化的产品,可将电能直接转化成热能,具有效率高,体积小,无污染,运行安全可靠,供热稳定,自动化程度高的优点,是理想的节能环保的供暖设备。
加上目前人们的环保意识的提高,电热锅炉越来越受人们的重视,在工业生产和民用生活用水中应用越来越普及。
电热锅炉目前主要用于供暖和提供生活用水。
主要是控制水的温度,保证恒温供水。
PID控制是迄今为止最通用的控制方法之一。
因为其可靠性高、算法简单、鲁棒性好,所以被广泛应用于过程控制中,尤其适用于可建立精确数学模型的确定性系统。
PID控制的效果完全取决于其四个参数,即采样周期ts、比例系数Kp、积分系数Ki、微分系数Kd。
因而,PID参数的整定与优化一直是自动控制领域研究的重要课题。
PID在工业过程控制中的应用已有近百年的历史,在此期间虽然有许多控制算法问世,但由于PID算法以它自身的特点,再加上人们在长期使用中积累了丰富经验,使之在工业控制中得到广泛应用。
在PID算法中,针对P、I、D三个参数的整定和优化的问题成为关键问题。
[5]
1.2国外研究现状
自70年代以来,由于工业过程控制的需要,特别是微电子技术和计算机技术的迅猛发展以及自动控制理论和设计方法发展的推动下,国外温度控制系统的发展迅速,并在智能化,自适应、参数整定等方面取得成果,在这方面,以日本、美国、德国、瑞典等国技术领先,都生产出了一批商品化的、性能优异的温度控制器及仪器仪表,并在各行各业广泛应用。
它们主要有以下特点:
1)适应于大惯性、大滞后等复杂的温度控制体统的控制。
2)能适应于受控系统数学模型难以建立的温度控制系统的控制。
3)能适用于受控系统过程复杂、参数时变的温度控制系统的控制。
4)这些温度控制系统普遍采用自适应控制、自校正控制、模糊控制、人工智能等理论及计算机技术,运用先进的算法,适应围广泛。
5)温度控制器普遍具有参数整定功能。
借助于计算机软件技术,温度控制器具有对控制参数及特性进行自整定的功能。
有的还具有自学习功能。
6)温度控制系统既有控制精度高、抗干扰能力强、鲁棒性好的特点。
目前,国外温度控制系统及仪表正朝着高精度、智能化、小型化等方向发展。
随温度控制系统在国各行各业的应用虽然应用很广泛,但从国生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比仍然有着较大的差距。
目前,我国在这方面总体水平处于20世纪80年代中后期的水平,成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适用于一般的温度系统的控制,难以控制滞后、复杂、时变温度系统控制。
能适应于较高的控制场合的智能化、自适应控制仪表,国还不十分成熟。
随着科学技术的不断发展,人们对温度控制系统的要求越来越高,因此,高精度、智能化、人性化的温度控制系统是国外必然发展的趋势。
1.3项目研究容
以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;
采用PID算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自
动控制。
可编程逻辑控制器(PLC)是集计算机技术、自动控制技术和通信技术为一体的新型自动控制装置。
其性能优越,已被广泛的应用于工业控制的各个领域,并已经成为工业自动化的三大支柱(PLC、工业机器人、CAD/CAM)之一。
PLC技术在温度监控系统上的应用从整体上分析和研究了控制系统的硬件配置、电路图的设计、程序设计,控制对象数学模型的建立、控制算法的选择和参数的整定、人机界面的设计等。
论文通过对德国西门子公司的S7-200系列PLC控制器,温度传感器将检测到的实际炉温转化为电压信号,经过模拟量输入模块转换成数字信号送到PLC中进行PID调节,PID控制器输出转化为0-10mA的电流信号输入控制可控硅电压调整器或触发板改变可控硅管导通角的大小来调节输出功率。
对于监控画面,利用亚控公司的组态软件“组态王“
串级系统是由调节器串联起来工作,其中一个调节器的输出作为另一个调节器的给定值的系统。
整个系统包括两个控制回路,主回路和副回路。
副回路由副变量检测变送、副调节器、调节阀和副过程构成;
主回路由主变量检测变送、主调节器、副调节器、调节阀、副过程和主过程构成。
一次扰动:
作用在主被控过程上的,而不包括在副回路围的扰动。
二次扰动:
作用在副被控过程上的,即包括在副回路围的扰动。
在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰动,而且又能改善过程特性。
副调节器具有“粗调”的作用,主调节器具有“细调”的作用,从而使其控制品质得到进一步提高。
[7]
第二章PLC和组态软件基础
可编程控制器是是一种工业控制计算机,简称PLC(ProgrammablelogicController),它使用可编程序的记忆以存储指令,用来执行逻辑、顺序、计时、计数、和演算等功能,并通过数字或模拟的输入输出,以控制各种机械或生产过程。
2.1可编程控制器基础
2.1.1可编程控制器的产生和应用
1969年美国数字设备公司成功研制世界第一台可编程序控制器PDP-14,并在GM公司的汽车自动装配线上首次使用并获得成功。
1971年日本从美国引进这项技术,很快研制出第一台可编程序控制器DSC-18。
1973年西欧国家也研制出他们的第一台可编程控制器。
我国从1974年开始研制,1977年开始工业推广应用。
进入20世纪70年代,随着电子技术的发展,尤其是PLC采用通讯微处理器之后,这种控制器功能得到更进一步增强。
进入20世纪80年代,随着大规模和超大规模集成电路等微电子技术的迅猛发展,以16位和少数32位微处理器构成的微机化PLC,使PLC的功能增强,工作速度快,体积减小,可靠性提高,成本下降,编程和故障检测更为灵活,方便。
目前,PLC在国外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业。
2.1.2可编程控制器的组成和工作原理
可编程控制器的组成:
PLC包括CPU模块、I/O模块、存、电源模块、底板或机架。
1.CPU
CPU是PLC的核心,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC部电路的工作状态和编程过程中的语法错误等。
CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。
存主要用于存储程序及数据,是PLC不可缺少的组成单元。
CPU速度和存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。
2.I/O模块
PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。
I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。
输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。
I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。
常用的I/O分类如下:
开关量:
按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。
模拟量:
按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。
除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。
按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。
3.编程器
编程器的作用是用来供用户进行程序的输入、编辑、调试和监视的。
编程器一般分为简易型和智能型两类。
简易型只能联机编程,且往往需要将梯形图转化为机器语言助记符后才能送入。
而智能型编程器(又称图形编程器),不但可以连机编程,而且还可以脱机编程。
操作方便且功能强大。
4.电源
PLC电源用于为PLC各模块的集成电路提供工作电源。
同时,有的还为输入电路提供24V的工作电源。
电源输入类型有:
交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。
[6]
可编程控制器的工作原理:
PLC的工作方式是一个不断循环的顺序扫描工作方式。
每一次扫描所用的时间称为扫描周期或工作周期。
CPU从第一条指令开始,按顺序逐条地执行用户程序直到用户程序结束,然后返回第一条指令开始新的一轮扫描。
PLC就是这样周而复始地重复上述循环扫描的。
PLC工作的全过程可用图2-1所示的运行框图来表示。
图2-1可编程控制器运行框图
2.1.3可编程控制器的分类及特点
(一)小型PLC
小型PLC的I/O点数一般在128点以下,其特点是体积小、结构紧凑,整个硬件融为一体,除了开关量I/O以外,还可以连接模拟量I/O以及其他各种特殊功能模块。
它能执行包括逻辑运算、计时、计数、算术、运算数据处理和传送通讯联网以及各种应用指令。
(二)中型PLC
中型PLC采用模块化结构,其I/O点数一般在256~1024点之间,I/O的处理方式除了采用一般PLC通用的扫描处理方式外,还能采用直接处理方式即在扫描用户程序的过程中直接读输入刷新输出,它能联接各种特殊功能模块,通讯联网功能更强,指令系统更丰富,存容量更大,扫描速度更快。
(三)大型PLC
一般I/O点数在1024点以上的称为大型PLC,大型PLC的软硬件功能极强,具有极强的自诊断功能、通讯联网功能强,有各种通讯联网的模块可以构成三级通讯网实现工厂生产管理自动化,大型PLC还可以采用冗余或三CPU构成表决式系统使机器的可靠性更高
2.2组态软件的基础
2.2.1组态的定义
组态就是用应用软件中提供的工具、方法,完成工程中某一具体任务的过程。
组态软件是有专业性的,一种组态软件只能适合某种领域的应用。
组态的概念最早出现在工业计算机控制中,如DCS(集散控制系统)组态,PLC梯形图组态。
人机界面生成软件就叫工控组态软件。
工业控制中形成的组态结果是用在实时监控的。
从表面上看,组态工具的运行程序就是执行自己特定的任务。
工控组态软件也提供了编程手段,一般都是置编译系统,提供类BASIC语言,有的支持VB,现在有的组态软件甚至支持C#高级语言。
在当今工控领域,一些常用的大型组态软件主要有:
ABB-OptiMax,WinCC,iFix,Intouch,组态王,力控,易控,MCGS等。
本设计采用亚控的组态王软件进行组态的设计。
2.2.2组态王软件的特点
组态王软件具有适应性强、开放性好、易于扩展、经济、开发周期短等优点。
通常可以把这样的系统划分为控制层、监控层、管理层三个层次结构。
其中监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,且在自动控制系统中完成上传下达、组态开发的重要作用。
尤其考虑三方面问题:
画面、数据、动画。
通过对监控系统要求及实现功能的分析,采用组态王对监控系统进行设计。
组态软件也为试验者提供了可视化监控画面,有利于试验者实时现场监控。
而且,它能充分利用Windows的图形编辑功能,方便地构成监控画面,并以动画方式显示控制设备的状态,具有报警窗口、实时趋势曲线等,可便利的生成各种报表。
它还具有丰富的设备驱动程序和灵活的组态方式、数据功能[8]。
2.2.3组态王软件仿真的基本方法
(1)图形界面的设计
图形,是用抽象的图形画面来模拟实际的工业现场和相应的工控设备。
(2)构造数据库
数据,就是创建一个具体的数据库,并用此数据库中的变量描述工控对象的各种属性,比如水位、流量等。
(3)建立动画连接
连接,就是画面上的图素以怎样的动画来模拟现场设备的运行,以及怎样让操作者输入控制设备的指令。
(4)运行和调试
第三章PLC控制系统的硬件设计
本章主要从系统设计结构和硬件设计的角度,介绍该项目的PLC控制系统的设计步骤、PLC的硬件配置、外部电路设计以及PLC控制器的设计参数的整定。
3.1PLC控制系统设计的基本原则和步骤
3.1.1PLC控制系统设计的基本原则
1.充分发挥PLC功能,最大限度地满足被控对象的控制要求。
2.在满足控制要求的前提下,力求使控制系统简单、经济、使用及维修方便。
3.保证控制系统安全可靠。
4.应考虑生产的发展和工艺的改进,在选择PLC的型号、I/O点数和存储器容量等容时,应留有适当的余量,以利于系统的调整和扩充。
3.1.2PLC控制系统设计的一般步骤
设计PLC应用系统时,首先是进行PLC应用系统的功能设计,即根据被控对象的功能和工艺要求,明确系统必须要做的工作和因此必备的条件。
然后是进行PLC应用系统的功能分析,即通过分析系统功能,提出PLC控制系统的结构形式,控制信号的种类、数量,系统的规模、布局。
最后根据系统分析的结果,具体的确定PLC的机型和系统的具体配置。
PLC控制系统设计可以按以下步骤进行:
1.熟悉被控对象,制定控制方案分析被控对象的工艺过程及工作特点,了解被控对象机、电、液之间的配合,确定被控对象对PLC控制系统的控制要求。
2.确定I/O设备根据系统的控制要求,确定用户所需的输入(如按钮、行程开关、选择开关等)和输出设备(如接触器、电磁阀、信号指示灯等)由此确定PLC的I/O点数。
3.选择PLC选择时主要包括PLC机型、容量、I/O模块、电源的选择。
4.分配PLC的I/O地址根据生产设备现场需要,确定控制按钮,选择开关、接触器、电磁阀、信号指示灯等各种输入输出设备的型号、规格、数量;
根据所选的PLC的型号列出输入/输出设备与PLC输入输出端子的对照表,以便绘制PLC外部I/O接线图和编制程序。
5.设计软件及硬件进行PLC程序设计,进行控制柜(台)等硬件的设计及现场施工。
由于程序与硬件设计可同时进行,因此,PLC控制系统的设计周期可大大缩短,而对于继电器系统必须先设计出全部的电气控制线路后才能进行施工设计。
6.联机调试联机调试是指将模拟调试通过的程序进行在线统调。
3.1.3PLC程序设计的一般步骤
1.绘制系统的功能图。
2.设计梯形图程序。
3.根据梯形图编写指令表程序。
4.对程序进行模拟调试及修改,直到满足控制要求为止。
调试过程中,可采用分段调试的方法,并利用编程器的监控功能。
PLC控制系统的设计步骤可参考图3-1:
图3-1PLC控制系统的设计步骤
3.2PLC的选型和硬件配置
3.2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 PLC 城市 供热 锅炉 水温 控制系统 设计 说明