建筑英汉互译论文文档格式.docx
- 文档编号:19718829
- 上传时间:2023-01-09
- 格式:DOCX
- 页数:20
- 大小:144.82KB
建筑英汉互译论文文档格式.docx
《建筑英汉互译论文文档格式.docx》由会员分享,可在线阅读,更多相关《建筑英汉互译论文文档格式.docx(20页珍藏版)》请在冰豆网上搜索。
AmbroseDodooa,∗,LeifGustavssona,b,RogerSathre
Abstract:
Inthisstudyweanalyzethelifecycleprimaryenergyuseofawood-frameapartmentbuildingdesignedtomeetthecurrentSwedishbuildingcode,theSwedishbuildingcodeof1994orthepassivehousestandard,andheatedwithdistrictheatorelectricresistanceheating.Theanalysisincludestheprimaryenergyuseduringtheproduction,operationandend-of-lifephases.Wefindthatanelectricheatedbuildingbuilttothecurrentbuildingcodehasgreaterlifecycleprimaryenergyuserelativetoadistrictheatedbuilding,althoughthestandardforelectricheatingismorestringent.Also,theprimaryenergyuseforanelectricheatedbuildingconstructedtomeetthepassivehousestandardissubstantiallyhigherthanforadistrictheatedbuildingbuilttotheSwedishbuildingcodeof1994.Theprimaryenergyformaterialproductionconstitutes5%oftheprimaryenergyforproductionandspaceheatingandventilationofanelectricheatedbuildingbuilttomeetthe1994code.Theshareofproductionenergyincreasesastheenergy-efficiencystandardofthebuildingimprovesandwhenefficientenergysupplyisused,andreaches30%foradistrictheatedpassivehouse.Thisstudyshowsthesignificanceofalifecycleprimaryenergyperspectiveandthechoiceofheatingsysteminreducingenergyuseinthebuiltenvironment
Keywords:
BuildingcodePassivehouseLifecycleprimaryenergyElectricheatingDistrictheating
1.Introduction
Buildingsaccountfor30–40%ofthetotalprimaryenergyuseglobally[1],andthebuildingsectorofferslargepotentialtoreduceprimaryenergyuseandCO2emissionbye.g.reducedheatingdemands,increasedefficiencyinenergysupplychainsandgreateruseofrenewableresourcesformaterialsandfuels.Severalstrategiescanbeusedtorealizethispotential,includingenergyefficiencyrequirementsinbuildingstandards,forexamplerequirementsthatspecifyminimumenergyefficiencyforbuildings.ImprovedbuildingenergyefficiencyisapriorityissueintheEuropeanUnion(EU),wherethebuildingsectoraccountsforthelargestshareofthetotalprimaryenergyuse[2].TheEUEnergyPerformanceofBuildingDirective(EPBD)requiresMemberStatestoimplementimprovedenergyefficiencymeasuresforbuildings[3].InSweden,astringentbuildingenergy-efficiencystandardwasintroducedinresponsetotheEPBD,shiftingthecompliancecriteriatotheenergyperformancemethodfromtheaverageoverallU-valuemethod.Theenergyperformancemethodsetsamaximumvalueperm2buildingareaforenergyuseorCO2emissionbasedonenergysupply,whiletheaverageoverallU-valuemethodsetsamaximumthermaltransmittancevalueforabuildingenvelope.Similarimprovedbuildingenergy-efficiencystandardshavebeenintroducedinotherEUMemberStates[4].Forexample,Denmarkintroducedanewbuildingenergy-efficiencystandardbasedontheenergyframemethodwhichsetsamaximumenergylossvalueperm2buildingarea[5].IntheUK,theenergyconservationsectionofthebuildingcodewasrevised,shiftingthecompliancecriteriatotheenergyperformancemethodfromtheelementalU-valuemethod[6].InSpain,themaximumU-valueforbuildingelementswastightened,tofurtherimprovetheenergyperformanceofbuildingenvelopes[7].ThepassivehousestandardhasbeenappliedforseveralbuildingsinEurope[8],andisgainingincreasingattentionasinterestinbuildingswithlowspaceheatusegrows.
Thespecificapproachofbuildingenergy-efficiencystandardsindealingwithenergyefficiencymayvarybetweencountries.However,buildingenergy-efficiencystandardsgenerallyfocusonfinalenergyuseforoperationbyspecifyingthermalpropertiesandspecificfinalenergyuseforbuildings.Theoperationenergygenerallydominatesthelifecycleenergyuse[9,10],soconstructingbuildingstomeetahighthermalstandardgenerallyreduceslifecycleprimaryenergyuse.However,focusingonlyonoptimizingtheenergyperformanceintheoperationphasemayresultinpotentialtrade-offsinotherlifecyclephases.Forexample,Feist[11]comparedtwobuildingsandfoundthatthebuildingwithloweroperationenergyhadgreatertotallifecycleprimaryenergyusebecauseofitshighproductionenergy.Thusmeasuresthatreduceoperationenergyusedonotnecessarilyreducetotallifecycleprimaryenergyuse.Theprimaryenergyforbuildingproductionbecomesrelativelymoreimportantasmeasuresareappliedtoreducetheoperationenergyuse[12].Thormark[13]foundtheproductionenergytorepresent45%oftotallifecycleprimaryenergyuseinalowenergybuilding.Theenergyimplicationsofbuildingsextendbeyondtheoccupationstage,andinalifecycleperspectiveincludestheproduction,operationandend-of-lifestages.
Theend-useenergyservicesofabuildingcanbeprovidedbyvarioustypesofsupplysystems,whichcanresultinsignificantlydifferentprimaryenergyuse.Forexample,GustavssonandJoelsson[14]foundthatadistrictheatedconventionalhousehaslowerprimaryenergyusethananelectricallyheatedpassivehouse,eventhoughthepassivehousehadsubstantiallylowerfinalenergyuse.Alltheprocessesalongtheenergychain,fromtheextractionofmaterialtorefining,transport,conversiontoheatandelectricityanddistributiontotheusercanbeperformedwithdifferentenergyefficiencyandwithvaryingemissions.Alltheenergyinputfortheseprocessesneedtobeincludedforafulldescriptionofaparticularenergysystem.Acomprehensiveassessmentoftheenergeticimpactofabuildingrequiresasystem-wideperspective,includingalllifecyclephasesofthebuildingandtheentireenergychainfromnaturalresourcestofinalenergyservices.Suchanapproachwouldhelpustounderstandthelifecycleimplicationsofbuildingenergy-efficiencystandardsandtoreducetheprimaryenergyuseinthebuiltenvironment.
Somestudieshaveanalyzedanddiscussedtheenergyimpactofbuildingenergy-efficiencystandardsbutmostofthese[e.g.5–7,15,16]focusontheenergyuseduringtheoperationstageofbuildings.Feist[11]analyzedtheprimaryenergyuseofbuildingsbuilttotheGermanybuildingcodeof1984andthepassivehousestandard,includingtheenergyuseduringtheproductionandoperationstages.Casals[17]analyzedtheprimaryenergyuseofabuildingconstructedtothenewbuildingcodeofSpainandshowedtheimportanceofincludingtheproductionenergyinbuildingenergyassessment.However,studiesthathaveanalyzedtheimplicationsofbuildingenergy-efficiencystandardsfromalifecycleprimaryenergyperspectivearelacking.InthisstudyweanalyzetheimpactoftheSwedishbuildingcodesorpassivehousestandardonthelifecycleprimaryenergyuseofresidentialbuildings.
2.Studydescriptions
2.1.Energyefficiencystandards
Weanalyzecaseswherebuildingsaredesignedtomeettheenergy-efficiencystandardofthecurrentSwedishbuildingcode(BBR2009),theSwedishbuildingcodeof1994(BBR1994)ortheSwedishpassivehouse(Passivhus)standard.TheBBR2009[18]becamemandatoryinJanuary2010andspecifieslimitsforthespecificenergyuseforbuildings,encompassingthefinalenergyuseforspaceheating,domestichotwaterandelectricityforfansandpumpsbutexcludingelectricityforhouseholdappliancesandlighting.Thespecificenergyusestandardforbuildingsvarieswithclimaticzones,andwhetherelectricresistanceornon-electricheatingisused.Themaximumspecificenergyuseforelectricallyheatedbuildingsare95,75and55kWh/m2yearfortheclimatezonesI,IIandIII,respectively(seeFig.1).Fornonelectricresistanceheatedbuildings,thecorrespondingvaluesare150,130and110kWh/m2year,respectively.Also,theaverageU-valueforthewholebuildingenvelopemustnotexceed0.40and0.50W/m2forelectricresistanceandnon-electricheatedbuildings,respectively.
2.2.Buildings
Ourcase-studybuildingisa4-storeymulti-familywood-framebuildingwith16apartmentsandatotalheatedfloorareaof1190m2inVä
xjö
insouthernSweden(climatezoneIII).Thebuildingwasbuiltduringthemid-1990stothestandardoftheBBR1994.Theouterwallsofthebuildingconsistofthreelayers,including5cmplaster-compatiblemineralwoolpanels,12cmthicktimberstudswithmineralwoolbetweenthestuds,andawiringandplumbinginstallationlayerconsisting7cmthicktimberstudsandmineralwool.Two-thirdsoftheouterfac¸
adeisplasteredwithstucco,withtheremaindercoveredwithwoodpaneling.Thegroundfloorconsistsof1.5cmoakboardingon16cmconcreteslablaidon7cmexpandedpolystyreneand15cmmacadam,andtheremainingfloorsaremadeoflighttimberjoists.Newbuildingsofthesamesizearethenmodeledtoachievetheenergy-efficiencoftheBBR2009forelectricordistrictheatedbuildingsandthePassivhusstandard.Table1showsthethermalenvelopecharacteristicsofthebuildings.TheBBR2009districtheatedbuildinghassimilarthermalenvelopecharacteristicsastheoriginalbuildingbutincludesadditionalmineralwoolinsulationof5and10cmfortheroofatticandexternalwalls,respectively.FortheBBR2009electricheatedbuilding,efficienttapsareassumedtobeusedandtheoverallU-valueofthebuildingenvelopeisassumedtobeimprovedbytriple-glazedwindowswithlowemissivitycoatingandkryptongasfilling;
20cmadditionalmineralwoolinsulationintheexternalwall;
8cmadditionalmineralwoolinsulationintheroofattic;
andmechanicalventilationsystemwith85%heatrecoveryefficiency.ThePassivhusbuildingissimilartotheBBR2009e
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 建筑 英汉 论文