新人教版八年级数学上册第11章全等三角形教案Word下载.docx
- 文档编号:19551881
- 上传时间:2023-01-07
- 格式:DOCX
- 页数:27
- 大小:104.66KB
新人教版八年级数学上册第11章全等三角形教案Word下载.docx
《新人教版八年级数学上册第11章全等三角形教案Word下载.docx》由会员分享,可在线阅读,更多相关《新人教版八年级数学上册第11章全等三角形教案Word下载.docx(27页珍藏版)》请在冰豆网上搜索。
1.给出“全等形”、“全等三角形”的定义.
2.列举反例,强调定义的条件.
3.提出问题“你能构造一对全等三角形”吗?
你是如何构造的,与同伴交流.
4.全等三角形的对应元素及性质:
教师结合手中的教具说明(学生运用自制学具理解)对应元素(顶点、边、角)的含义,并引导学生观察全等三角形中对应元素的关系,发现对应边相等,对应角相等(教师启发学生根据“重合”来说明道理).
通过构图,为学生理解全等三角形的有关概念奠定基础.
解析、应用与拓广
1.学生用半透明的纸描绘教科书91页图13.1-1中的△ABC,然后按“思考题”要求在三个图中依次操作.(或播放相应的课件)体验“平移、翻折、旋转前后的两个图形全等”.
2.以图13.1-1中的两个三角形为例,介绍对应边、对应角以及两个三角形全等的符号表示、读法、写法,并说出图13.1—2、图13.1—3的对应顶点、对应边、对应角,写出相等的边和角(解释“≌”的含义和读法,并强调对应顶点写在对应位置上).
善于对基本三角形变换出各种图形,观察它们的对应边、对应角的变化,体会当公共边、公共角完全或部分重叠时,如何快速寻找.
培养学生的动手操作能力.
3.总结寻找全等三角形对应元素的方法,渗透全等变换的思想.
4.学生运用自制的两块全等三角形模板,用平移、翻折、旋转等方法,先独立拼出教科书92~93页中的5个图形,说出它们的对应顶点、对应边、对应角,再与同伴交流,你还能拼出其他图形吗?
拓展与延伸
1.议一议:
右图是一个等边三角形,你能把它分成两个全等的三角形吗?
你能把它分成三个、四个全等的三角形吗?
2.例1已知△ABC≌△DFE,∠A=96°
,∠B=25°
,DF=10cm.求∠E的度数及AB的长.
目的是使学生在操作的过程中理解全等三角形的概念,发展空间观念.鼓励学生根据全等三角形的概念和性质,通过观察、尝试找到分割的方法,并可用分出来的图形是否重合来验证所得的结论.
随堂练习
检查学生对本节课的掌握情况.
1.全等用符号__表示.读作__.
2.△ABC全等于三角形△DEF,用式子表示为__.
3.△ABC≌△DEF,∠A的对应角是∠D,∠B的对应角∠E,则∠C与__是对应角;
AB与__是对应边,BC与__是对应边,AC与__是对应边.
4.判断题:
(1)全等三角形的对应边相等,对应角相等.()
(2)全等三角形的周长相等.()
(3)面积相等的三角形是全等三角形.()
(4)全等三角形的面积相等.()
5.找出由七巧板拼成的图案中的全等三角形.
小结提高
1.回忆这节课:
在自己动手实际操作中,得到了全等三角形的哪些知识?
对于学生的发言,教师要给予肯定的评价.
2.找全等三角形对应元素的方法,注意挖掘图形中隐含的条件,如公共元素、对顶角等,但公共顶点不一定是对应顶点;
3.在运用全等三角形的定义和性质时应注意规范书写格式.
布置作业
1.必做题:
教科书92页习题13.1第1题,第2题,第3题.
2.选做题:
教科书92页习题13.1第4题.
教学后记
11.2三角形全等的条件
(1)
①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
②掌握三角形全等的“边边边”条件,了解三角形的稳定性.
③通过对问题的共同探讨,培养学生的协作精神.
指导学生分析问题,寻找判定三角形全等的条件.
三角形全等条件的探索过程.
复习过程,引入新知
多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:
全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.
在教师引导下回忆前面知识,为探究新知识作好准备.
创设情境,提出问题
根据上面的结论,提出问题:
两个三角形全等,是否一定需要六个条件呢?
如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?
问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望.
组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.
对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生的个性思维.
建立模型,探索发现
出示探究1,先任意画一个△ABC,再画一个△A'
B'
C'
,使△ABC与△A'
满足上述条件中的一个或两个.你画出的△A'
与△ABC一定全等吗?
学生动手操作,通过实践、自主探索、交流,获得新知,同时也渗透了分类的思想.
让学生按照下面给出的条件作出三角形.
(1)三角形的两个角分别是30°
、50°
.
(2)三角形的两条边分别是4cm,6cm.
(3)三角形的一个角为30°
,一条边为3cm.
再通过画一画,剪一剪,比一比的方式,得出结论:
只给出一个或两个条件时,都不能保证所画出的三角形一定全等.
出示探究2,先任意画出一个△A'
,使A'
=AB,B'
=BC,C'
A'
=CA,把画好的△A'
剪下,放到△ABC
上,它们全等吗?
让学生充分交流后,在教师的引导下作出△A'
,并通过比较得出结论:
三边对应相等的两个三角形全等.学生模仿上面的研究方法,在教师的引导下完成操作过程,
通过交流,归纳得出结论,同时也明确判定三角形全等需要三个条件.
应用新知,体验成功
实物演示:
由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.
让学生通过实物来理解三角形的稳定性.鼓励学生举出生活中的实例.
让学生体验数学在生活中应用的广泛性.
给出例1,如图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.
让学生独立思考后口头表达理由,由教师板演推理过程.
检测学生对知识的掌握情况及应用能力,让学生初步体验成功的喜悦,同时也明确一下书写过程.
巩固练习
教科书第96页的思考及练习.
让学生巩固对三角形全等的判定条件的认识,同时也让学生尝试书写推理过程.
反思小结
回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.
再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验.
作业
教科书第103页习题13.2中的第1、2题.
教科书第104页第9题.
3.备选题:
(1)如图是用圆规和直尺画已知角的平分线的示意图,作法如下:
①以A为圆心画弧,分别交角的两边于点B和点C;
②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;
③画射线AD.
AD就是∠BAC的平分线.你能说明该画法正确的理由吗?
(2)如图四边形ABCD中,AB=CD,AD=BC,你能把四边形ABCD分成两个相互全等的三角形吗?
你有几种方法?
你能证明你的方法吗?
试一试.
培养学生良好的学习习惯,巩固所学的知识,作业2是让学生对所学知识进行延伸和应用,满足不同层次学生的不同要求.
教学后记
11.2三角形全等的条件
(2)
①经历探索三角形全等条件的过程,培养学生观察分析图形能力、动手能力.
②在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理.
应用“边角边”证明两个三角形全等,进而得出线段或角相等.
创设情境,引入课题
多媒体出示探究3:
已知任意△ABC,画△A'
=AB,A'
=AC,∠A'
=∠A.
教师点拨,学生边学边画图,再让学生把画好的ΔA'
剪下,放在ΔABC上,观察这两个三角形是否全等.
让学生动手操作具有“一般性”的实验,增加学生的现实感受,同时也培养学生的动手操作能力,使学生可以非常直观地获得结果.
交流对话,探求新知
根据前面的操作,鼓励学生用自己的语言来总结规律:
两边和它们的夹角对应相等的两个三角形全等.(SAS)
培养学生的概括能力和语言表达能力.
补充强调:
角必须是两条相等的对应边的夹角,边必须是夹相等角的两对边.
归纳、分析得到的规律,使学生有更深刻的认识和理解.
应用新知,体验成功
出示例2,如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?
通过测量池塘两端的距离这样一个实际问题,让学生综合运用了三角形全等的判定和性质,体验数学来源于实践,又服务于实践的思想,同时使学生进一步熟悉推理论证的模式,进一步完善学生的证明书写.
让学生充分思考后,书写推理过程,并说明每一步的依据.
(若学生不能顺利得到证明思路,教师也可作如下分析:
要想证AB=DE,只需证△ABC≌△DEC,△ABC与△DEC全等的条件现有……还需要……)
明确证明分别属于两个三角形的线段相等或者角相等的问题,常常通过证明这两个三角形全等来解决.
再次探究,释解疑惑
出示探究4,我们知道,两边和它们的夹角对应相等的两个三角形全等.由“两边及其中一边的对角对应相等”的条件能判定两个三角形全等吗?
为什么?
让学生模仿前面的探究方法,得出结论:
两边及其中一边的对角对应相等的两个三角形不一定全等.
让学生思考、交流、探讨,通过学生之间的交流、探讨活动,培养学生的协作精神,同时也释解心中的疑惑.
教师演示:
方法
(一)教科书98页图13.2-7.
方法
(二)通过画图,让学生更直观地获得结论.
教科书第99页,练习
(1)
(2).
教给学生寻找全等条件的方法,完善学生全等的证明书写.
小结
1.判定三角形全等的方法;
2.证明线段、角相等常见的方法有哪些?
让学生自由表述,其他学生补充,让学生自己将知识系统化,以自己的方式进行建构.
通过课堂小结,归纳整理本节课学习的内容,帮学生完善认知结构,形成解题经验.
教科书第104页,习题13.2第3、4题.
让学生巩固所学知识,注意学生能力的发展.
教科书第105页第10题.
(1)小明做了一个如图所示的风筝,测得DE=DF,EH=FH,你能发现哪些结论?
并说明理由.
(2)如图,∠1=∠2,AB=AD,AE=AC,
求证BC=DE.
11.2三角形全等的条件(3)
①探索并掌握两个三角形全等的条件:
“ASA”“AAS”,并能应用它们判别两个三角形是否全等.
②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;
并通过对知识方法的总结,培养反思的习惯,培养理性思维.
③敢于面对教学活动中的困难,能通过合作交流解决遇到的困难.
理解、掌握三角形全等的条件:
“ASA”“AAS”.
探究出“ASA”“AAS”以及它们的应用.
创设情境
1.复习(用课件演示)
(1)作线段AB等于已知线段a,
(2)作∠ABC,等于已知∠α
(课件出示题目,让学生回顾作图方法,用课件演示.)
复习旧知,为探究“ASA”中的作△A'
作好知识铺垫,让学生在知识上做好衔接.
2.引人
师:
我们已经知道,三角形全等的判定条件有哪些?
生:
“SSS”“SAS”
那除了这两个条件,满足另一些条件的两个三角形是否也可能全等呢?
今天我们就来探究三角形全等的另一些条件.
复习判别两个三角形全等的两个条件,提出判别全等的新问题,激发学生探究的欲望,提高学习的积极性.
探究新知
1.师:
我们先来探究第一种情况.(课件出示“探究5……”)
(1)探究5
先任意画出一个△ABC,再画一个△A'
=AB,∠A'
=∠A,∠B'
=∠B(即使两角和它们的夹边对应相等).把画好的△A'
剪下,放到△ABC上,它们全等吗?
怎样画出△A'
?
先自己独立思考,动手画一画.
让学生独立尝试画ΔA'
,目的是给学生独立思考、自主探究的时间,培养独立面对问题的勇气.并在独立作图过程中,提高分析、作图能力,获得“ASA”的初步感知.
保证作图的正确性,这是探究出正确规律的前提.
在画的过程中若遇到不能解决的问题,可小组合作交流解决.
独立探究,试着画△A'
(有问题的,可以小组内交流解决……)……
(2)全班讨论交流
画好之后,我们看这儿有一种画法:
(课件出示画法,出现一步,画一步)
你是这样画的吗?
把画好的△A'
剪下,放到△ABC上,看看它们是否全等.
(剪△A'
,与△ABC作比较……)
全等吗?
全等.
这个探究结果反映了什么规律?
试着说说你的发现.
生1:
我发现……
生2:
……
生3:
两角和它们的夹边对应相等的两个三角形全等.
不同的学生,表达语言也不同,不管是否严密,我们都应积极鼓励,加以引导,逐步严密化.
这条件可以简写成“角边角”或“ASA”.至此,我们又增加了一种判别三角形全等的方法.特别应注意,“边”必须是“两角的夹边”.
2.探究6
我们再看看下面的条件:
在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?
能利用角边角条件证明你的结论吗?
看已知条件,能否用“角边角”条件证明.
生独立思考,探究……再小组合作完成.
留给学生充分思考的时间.
你是怎么证明的?
(让小组派代表上台汇报)
小组1:
小组2:
……投影仪展示学生证明过程
(根据学生的不同探究结果,进行不同的引导)
让学生上台汇报,创设学生展示自己探究成果的机会,获得成功的体验,激发再次探究的热情.
从这可以看出,从这些已知条件中能得出两个三角形全等.这又反映了一个什么规律?
两个角和其中一条边对应相等的两个三角形全等.
在"
ASA”中,“边”必须是“两角的夹边”,而这里,“边”可以是“其中一个角的对边”.
强调“AAS”中的边是“其中一个角的对边”.
非常好,这里的“边”是“其中一个角的对边”.那怎样更完整的表述这一规律?
两个角和其中一个角的对边对应相等的两个三角形全等.
多让几个学生描述,进一步培养归纳、表达的能力.
生1很好,这条件我们可以简写成“角角边”或“AAS"
,又增加了判定两个三角形全等的一个条件.
3.例3
下面我们看用“ASA”、“AAS”能否解决一些问题.
(课件出示例3)让学生自己看题、审题.
根据已知条件,能得出什么?
又联系所求证的,该如何证明?
(先独立探究,再与同桌或四人小组交换意见,再全班交流)
留给学生较充分的独立思考、探究的时间,在探究过程中,提高逻辑推理能力.
说说你的证明方法.(让学生上台讲解)
根据学生的回答,教师板书(注意,条件的书写顺序)……
与学生一起回顾证明方法,逐步培养反思的习惯,形成理性思维.
从这道例题中,我们又得出了证明线段相等的又一方法,先证两线段所在的三角形全等,这样,对应边也就相等了.
4.探究7:
(1)三角对应相等的两个三角形全等吗?
(课件出示题目)
想想,怎样来探究这个问题?
引导学生通过“画两个三角对应相等的三角形”,看是否一定全等,或“用两个同一形状但大小不同的三角板”等等方法来探究说明.
引导学生先确定探究的思路与方法,进一步培养理性思维.也为学生提供创新的空间与可能.
三个角对应相等的两个三角形不一定全等.
(2)师:
说得非常好.现在我们来小结一下:
判定两个三角形全等我们已有了哪些方法?
SSSSASASAAAS
一个良好的知识建构是以后知识有效迁移的有力的保证.
这节课通过对两个三角形全等条件的进一步探究,你有什么收获?
让学生各抒己见,积极地在知识、学习方法、习惯等方面加以小结,以培养反思的习
惯,培养理性思维.
教科书第101页,练习1、2.
教科书第103页习题13.2第5题.
教科书第105页第11、12题.
(1)图中的两个三角形有几对相等的角?
这两个三角形全等吗?
(2)如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?
如果可以,带哪块去合适?
11.2三角形全等的条件(4)
①探索出直角三角形全等的条件——HL,并掌握,能进行简单的应用.
②经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理能力.
③通过探究与交流,解决一些问题,获得成功的体验,进一步激发探究的积极性.
掌握判定两个直角三角形全等的特殊方法——HL.
熟练选择判定方法,判定两个直角三角形全等.
创设情境,引入新课
我们知道,判定两个三角形全等的条件有哪些?
SSS、SAS、AAS、ASA
根据这些条件,对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个直角三角形就全等了?
(课件显示两个直角三角形,教师指着直角三角形提问)
今天我们就来探究两个直角三角形全等的条件.
复习旧知,可更快更准确地解答下面的两个直角三角形全等的条件.
两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?
(让学生观察课件中的两个直角三角形并思考回答)
比较判定两个直角三角形全等的条件与判定两个一般三角形全等的条件的异同点,感知直角三角形全等判定也能用已学的判定条件.
再满足一边一锐角对应相等,就可用“AAS"
或“ASA"
证全等了.
再满足两直角边对应相等,就可用"
SAS"
那么,如果满足斜边和一条直角边对应相等,这两个直角三角形全等吗?
(不能作肯定回答,只能作某种猜测)
激发学生挑战新问题的积极性.
2.师:
好,现在不要求马上给出结论.看看,通过动手探究,你是否能得出结论.直角三角形我们用Rt△表示.
3.探究8:
任意画出一个Rt△ABC,使∠C=90°
,再画一个Rt△A'
,使B'
=BC,A'
=AB,把画好的RtΔA'
剪下,放到Rt△ABC上,看看它们是否全等.(课件出示题目,师生一起看题)
(独立探究,动手作图)
遇到不能解决的问题,可提问或由四人小组解决.
培养学生的分析、作图能力.
(看大部分同学已画好)现在请同学把自己的画法与这里出现的画法比较一下,你是否也是这样画的?
(课件出示画法,出示一步画一步)
画法直接由教师给出,而不安排学生画出,是考虑学生反映画图有一定的难度,况且作图不是本节课的重点.
画好后,把Rt△A'
剪下,放到Rt△ABC上,看它们全等吗?
非常好.我们这样画的Rt△与原来的Rt△是全等的,这反映了一个什么规律?
(先让学生同桌互相说说,再全班交流)
斜边和一条直角边对应相等的两个直角三角形全等.
让学生表述,培养归纳、表达能力,并能进一步理解“HL”这一条件.
说得非常好.这规律,我们可以简写成“斜边,直角边”或“HL”,这是不同于一般全等三角形的判定方法.
4.例4
接着我们看看,“HL”能有哪一些应用?
(课件出示例4)
结合图形,自己先分析一下已知条件和求证.
(读题、思考)……(少数学生能很快得出方法)
自己读题、审题,先独自证明,培养学生独自面对困难的勇气和信心.
从这些已知条件中,我们能发现什么?
结合所求证的,你又能发现什么?
(留时间让生思考)……
小组里交流你的办法和思路.哪几个小组展示自己的成果?
AC⊥BC,BD⊥AD,又加上AC=BD,我们能找到两个Rt△:
Rt△ADB,Rt△BCA.又因为AC=BD已经是
一条直角边相等,我们再找到另一条件就行了.
小组3:
让学生上台说方法,说思路,培养学生的逻辑推理能力;
展示自己的探究成果,获得成功的喜悦.
说得非常好(根据回答,及时引导,小结,并鼓励利用“HL”证明两个Rt△全等).
从这道题中我们可以看到,若已知几个垂直关系,我们可以试着找找Rt△,看看这些Rt△的关系.若能发现全等,那就能得出对应边、对应角相等了.
与学生一起反思总结,逐步培养学生反思的习惯.
教科书第103页练习1、2.
你有什么收获?
教科书第103页习题13.2第6、7题.
教科书第103页习题13.2第8题.
(1)如图,DE⊥AB,DF⊥AC,AE=AF,你能找出一对全等三角形吗?
(2)如图,把两根木条AC与AB的一端A固定在一起,让较短一条(AC)竖立于地面,让较长的一条AB绕AC旋转一周,则系在B端的粉笔就会在地面画出一个圆来,请说明理由.(不计粉笔的损耗)
11.3角的平分线的性质
(1)
①经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力.
②能够利用三角形全等,证明角平分线的性质和判定.
③会用尺规作已知角的平分线.
④能对角平分线性质进行简单的推理,解决一些实际问题.
角平分线画法、性质和判定.
运用角平分线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 上册 11 全等 三角形 教案