机械毕业设计英文外文翻译制造分析进程数使用快速标记技术Word文档下载推荐.docx
- 文档编号:19548169
- 上传时间:2023-01-07
- 格式:DOCX
- 页数:22
- 大小:230.93KB
机械毕业设计英文外文翻译制造分析进程数使用快速标记技术Word文档下载推荐.docx
《机械毕业设计英文外文翻译制造分析进程数使用快速标记技术Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《机械毕业设计英文外文翻译制造分析进程数使用快速标记技术Word文档下载推荐.docx(22页珍藏版)》请在冰豆网上搜索。
Author:
D.Clifton
Reviewer:
S.Turner
TableofContents
1ExecutiveSummary4
1.1Introdution4
1.2TechniquesEmployed4
1.3SummaryofResults4
1.4Observations4
2Introdution6
2.1OxfordBioSignalsLimited6
3ExternalReferences7
4Glossary7
5DataDescription8
5.1Datatypes8
5.2PriorExperimentKnowledge8
5.3TestDescription8
6Pre-processing10
6.1RemovalofStart/StopTransients10
6.2RemovalofPowerSupplySignal10
6.3FrequencyTransformation10
7AnalysisI-Visualisation13
7.1VisualisationofHigh-DimensionalData13
7.2Visualising5-DManufacturingProcessData13
7.3AutomaticNoveltyDetection15
7.4ConclusionofAnalysisI-Visualisation16
8AnalysisII-SignatureAnalysis17
8.1ConstructingSignatures17
8.2VisualisingSignatures19
8.3ConclusionofAnalysisII-SignatureAnalysis23
9AnalysisIII-TemplateAnalysis24
9.1ConstructingaTemplateofNormality24
9.2ResultsofNoveltyDetectionUsingTemplateAnalysis25
9.3ConclusionofAnalysisIII-TemplateAnalysis26
10AnalysisIV-None-linearPrediction27
10.1NeuralNetworksforOn-LinePrediction27
10.2ResultsofNoveltyDetectionusingNon-linearPrediction27
10.3ConclusionofAnalysisIV-Non-linearPrediction28
11OverallConclusion29
11.1Methodology29
11.2SummaryofTesults29
11.3FutureWork29
12AppendixA-NeuroScaleVisualisations31
TableofFigures
Figure1-Test90.Fromtoptobottom:
Ax,Ay,Az,AE,SPagainsttimet(s)
Figure2-PowerspectraforTest19afterremovalof50Hzpowersupplycontribution.Thetopplotshowsa3-D“landspace”plotofeachspectrum.Thebottomplotshowsa“contour”plotofthesameinformation,withincreasingsignalpowershownasincreasingcolourfromblacktored
Figure3-PowerspectraforTest19afterremovalofallspectralcomponentsbeneathpowerthreshold
Figure4-Azagainsttime(inseconds)forTest19,beforeremovaloflow-powerfrequencycomponents
Figure5-Azagainsttime(inseconds)forTest19,afterremovaloflow-powerfrequencycomponents
Figure6-SPforanexampletest,showingthreeautomatically-detecrminedstates:
S1-drillingin(showningreen);
S2-drill-bitbreak-throughandremoval(showninred);
S3-retraction(showninblue)
Figure7-Examplesignatureofvariable
plottedagainstoperating-point
Figure8-Powerspectrafortest51,frequency(Hz)onthex-axisbetween[0fs/2]
Figure9-Averagesignificantfrequency
Figure10-VisualisationofAEsignaturesforalltests
Figure11-VisualisationofAxbroadbandsignaturesforalltests
Figure12-VisualisationofAxaverage-frequencysignaturesforalltests
Figure13-Noveltydetectionusingatemplatesignature
Figure14-
1
ExecutiveSummary
1.1Introduction
ThepurposeofthisinvestigationconductedbyOxfordBioSignalswastoexamineanddeterminethesuitabilityofitstechniquesinanalyzingdatafromanexamplemanufacturingprocess.ThisreporthasbeensubmittedtoRolls-RoycefortheexpressedofassessingOxfordBioSignals’techniqueswithrespecttomonitoringtheexampleprocess.
TheanalysisconductedbyOxfordBioSignals(OBS)waslimitedtoafixedtimescale,afixedsetofchallengedataforasingleprocess(asprovidedbyRolls-RoyceandAachenuniversityofTechnology),withnopriordomainknowledge,norinformationofsystemfailure.
1.2TechniquesEmployed
OBSusedanumberofanalysistechniquesgiventhelimitedtimescales:
I-Visualisation,andClusterAnalysis
Thispowerfulmethodallowedtheevolutionofthesystemstate(fusingallavailabledatatypes)tobevisualisedthroughouttheseriesoftests.Thisshowedseveraldistinctmodesofoperationduringtheseries,highlightingmajoreventsobservedwithinthedata,latercorrelatedwithactualchangestothesystem’soperationbydomainexperts.
Clusteranalysisautomaticallydetectswhichoftheseeventsmaybeconsideredtobe“abnormal”,withrespecttopreviouslyobservedsystembehavior.
II-Signaturerepresentseachtestasasinglepointonaplot,allowingchangesbetweenteststobeeasilyidentified.Abnormaltestsareshownasoutlyingpoints,withnormaltestsformingacluster.
Modelingthenormalbehaviorofseveralfeaturesselectedfromtheprovideddata,thismethodshowedthatadvancewarningofsystemfailurecouldbeautomaticallydetectedusingthesefeatures,aswellashighlightingsignificanteventswithinthelifeofthesystem.
III-TemplateAnalysis
Thismethodallowsinstantaneoussample-by–samplenoveltydetection,suitableforon-lineimplementation.
UsingacomplementaryapproachtoSignatureAnalysis,thismethodalsomodelsnormalsystembehavior.Resultsconfirmedtheobservationmadeusingpreviousmethods.
IV-NeuralnetworkPredictor
Similarlyusefulforon-lineanalysis,thismethodusesanautomatedpredictorofsystembehaviour(aneuralnetworkpredictor),inwhichpreviouslyidentifiedeventswereconfirmed,andfurthersignificantepisodesweredetected.
1.3SummaryofResults
Earlywarningofsystemfailurewasindependentlyidentifiedbythevariousanalysismethodsemployed.
Severalsignificanteventsduringthelifeoftheprocesswerecorrelatedwithactualknowneventslaterrevealedbysystemexperts.
Changesinsensorconfigurationsareidentified,andperiodsofsystemstability(inwhichtestsaresimilartooneanother)arehighlighted.
Thisreportshallbeusedasthebasisforfurthercorrelationofdetectedeventsagainstactualoccurrenceswithinthelifeofthesystem,tobeperformedbyAachenUniversityofTechnology.
1.4Observations
Basedonthislimitedstudy,OBSareconfidentthattheirtechniquesareapplicabletoconditionmonitoringoftheexamplemanufacturingprocessasfollows:
Evidenceshowsthatautomateddetectionofsystemnoveltyispossible,comparedtoits“normal”operation.
Earlywarningofsystemdistressmaybeprovided,givingadequatetimetotakepreventativemaintenanceactionssuchthatsystemfailuremaybeavoided.
Provision“fleet-wide”analysisispossibleusingthetechniquesconsideredwithinthisinvestigation.
TheinvolvementofdomainknowledgefromsystemexpertsalongsideOBSengineerswillbecrucialindevelopingfutureimplementations.Whilethis“blind”analysisshowedthatOBSmodellingtechniquesareappropriateforprocessmonitoring,itisthecouplingofdomainknowledgewithOBSmodellingtechniquesthatmayprovideoptimaldiagnosticandprognosticanalysis.
2
Introduction
2.1OxfordBioSignalsLimited
ThisdocumentreportsontheinitialanalysisconductedbyOxfordBioSignalsofmanufacturingprocesschallengedataprovidedbyRolls-Royce,inconjunctionwithAachenUniversityofTechnology(AUT).
OxfordBioSignalsLimited(OBS)isaworld-classproviderofAcquisition,DataFusion,NeuralNetworksandotherAdvancedSignalProcessingtechniquesandsolutionsbrandedunderthecollectivenameQUICKTechnology.Thistechnologynotonlyprovidesforhealthandqualityassurancemonitoringoftheoperationalperformanceofequipmentandplant.
QUICKTechnologyhasbeenextensivelyproveninthefieldofgasturbinemonitoringwithbothon-lineandoff-lineimplementationsatmultiplelevels:
asaresearchtool,atestbedsystem,agroundsupporttool,anon-boardmonitoringsystem,anoff-lineanalysistoolanda“fleet”manager.
ManyofthetechniquesemployedbyOBSmaybedescribedasnoveltydetectionmethods.Thisapproachhasasignificantadvantageovermanytraditionalclassificationtechniquesinthatitisnotnecessarytoprovidefaultdatatothesystemduringdevelopment.Instead,providingasufficientlycomprehensivemodeloftheconditioncanbeidentifiedautomatically.Asinformationisdiscoveredregardingthecausesofthesedeviationsitisthenpossibletomovefromnoveltydetectiontodiagnosis,buttheabilitytoidentifypreviouslyunseenabnormalitiesisretainedatallstages.
3
ExternalReferences
Accompanyingdocumentationprovidingfurtherinformationonthedatasetsisavailableinunnumbereddocuments.
4Glossary
AUT-AachenUniversityofTechnology
GMM-GaussianMixtureModel
MLP-Multi-LayerPerception
OBS-OxfordBioSignalsLtd.
5DataDescription
Thefollowingsectionsgiveabriefoverviewofthedatasetobtainedbyvisualinspectionofthedata.
4.1Datatypes
Thedataprovidedwererecordedoveranumberoftests.Eachtestconsistedofasimilarprocedure,inwhichanautomateddrillunitmovedtowardsastaticmetallicdiskatafixedvelocity(“feed”),aholewasdrilledinthediskatthatsamefeed-rate.
Thefollowingdatastreamswererecordedduringeachtest,eachsampledatarateof20KHz:
Ax–accelerationofthedisk-mountingunitinthex-plane1,
Ay-accelerationofthedisk-mountingunitinthey-plane1,
Az-accelerationofthedisk-mountingunitinthez-plane1,
AE-RMSacousticemission,50-400KHz2,
SP-powerdeliveredtothedrillspindle3.
Testsconsideredinthisinvestigationusedthreedrill-prices(ofidenticalproductspecification)asshowninTable1.
Table1-ExperimentParametersbyTest
DrillNumber
TestNumbers
DrillRotationRate
FeedRate
1
[12]
1700RPM
80mm/min
2
[3127]
3
[130194]
120mm/min
Notethattests16,54,128,129werenotprovided,thusaseriesof190testsareanalysedinthisinvestigation.These190testsarelabeledasshowninTable2.
Table2–Testindicesusedinthisreportagainstactualtestnumbers
TestIndices
ActualTestNumber
[115]
[1652]
[1753]
[53125]
[55127]
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 机械 毕业设计 英文 外文 翻译 制造 分析 进程 使用 快速 标记 技术