ISO 76372和ISO 167502标准与对策Word文档下载推荐.docx
- 文档编号:19442911
- 上传时间:2023-01-06
- 格式:DOCX
- 页数:14
- 大小:891.52KB
ISO 76372和ISO 167502标准与对策Word文档下载推荐.docx
《ISO 76372和ISO 167502标准与对策Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《ISO 76372和ISO 167502标准与对策Word文档下载推荐.docx(14页珍藏版)》请在冰豆网上搜索。
2016
-Electricaltransienttransmissionbycapacitiveandinductivecouplingvialinesotherthansupplylines
尽管是EMC测试的标准,ISO7637也包含对电源测试的要求(ISO7637-2)。
在2011年,ISO7637将其中与
EMC不相关的电源测试,例如LoadDump测试的
Pulse5a,5b
移到
ISO16750-2,但标准中仍然保留着电源瞬态测试波形
Pulse1,
2a,
2b,
3a
3b。
ISO16750-2
ISO16750全称
Roadvehicles--Environmentalconditionsandtestingforelectricalandelectronicequipment,是针对汽车电子设备环境应力测试的标准,标准分五大部分:
∙ISO16750-1:
2006
-General
∙ISO16750-2:
2012
-Electricalloads
∙ISO16750-3:
-Mechanicalloads
∙ISO16750-4:
2010
-Climaticloads
∙ISO16750-5:
-Chemicalloads
本文只关注此标准中有关电源测试部分,即
ISO16750-2。
ISO7637-2和ISO16750-2针对
12V
24V
电源系统有不同的测试要求,本文仅讨论
电源系统。
表2列出的是ISO16750-2标准中有关电源测试部分。
表2.电源测试标准(ISO16750-2)
下面先从电源瞬态变化“黑名单”中赫赫有名的
Loaddump
说起,再逐步介绍两个标准中定义的其它测试要求。
LoadDump
Loaddump,中文“抛负载”,是指断开电源与负载的瞬间,由于负载突变而引起电源电压急剧的变化,抛负载可能引起两类问题:
1.对设备的供电失效
2.感性发电机产生大电压尖峰
在汽车电子领域,Loaddump是指在蓄电池充电时,断开发电机与蓄电池的连接而引起发电机输出大电压尖峰,从而使得其它连接到发电机电源的设备受到破坏的威胁。
如下图1所示,在交流发电机内部包含感性线圈和整流器,在对蓄电池进行大电流充电时,这时如果突然断开蓄电池,由于感性器件的电流无法突变,将引起交流发电机输出电压急剧上升,此电压尖峰可能高达
120V,并需要持续
400ms
后消退(如图2)。
图1.标准的3相定子绕组+6个整流二极管产生直流电配置
图2.
LoadDump(Unclamped)
早期的交流发电机没有引入钳位设计,在Loaddump的情况下,会产生高达100V的尖峰电压。
如今的交流电机设计中会增加钳位设计(图3),在
电源系统中,Loaddump一般被钳位在
35V;
而在
60V。
注意,虽然
有规定包含钳位设计的交流电机输出电压会被钳位在35V,但各家车厂可能有自定义的最高电压标准。
图3.
LoadDump(Clamped)
在
中针对交流发电机输出是否包含钳位设计,定义了两种LoadDump电源测试波形,TestA和TestB,如图4所示:
∙TestA—withoutcentralizedloaddumpsuppression
∙TestB—withcentralizedloaddumpsuppression
图4.
LoadDump电源测试波形(ISO16750-2)
在Loaddump测试中,ISO16750-2与ISO7637-2最显著的区别在于,ISO16750-2要求在
10
分钟内,每隔
1
分钟对DUT打一次Loaddump电源测试波形,而ISO7637-2只要求测试一次。
在ISO7637-2和ISO16750-2
中均定义了电机输出的内阻
Ri
,其值在
0.5Ω
~
4Ω
之间,Ri可以有效抑制输出到外部电路的最大能量,如图5所示。
需要注意的是,Ri在有钳位保护功能电机中是位于钳位二极管之前,也就是说,如果采用
TVS
管作为电源入口的LoadDump保护,而且钳位电压小于电机输出的钳位电压(35V)的话,必须确保该TVS管具有足够的能力吸收LoadDump所有的能量。
在有的设计中,也可能在TVS管前串接电阻(图中未标出)以辅助耗散LoadDump下的能量,但串阻不仅会引起电源线上的压降,而且在设备正常工作时,它也会产生一定的功耗。
图5.
电源接口TVS保护示意图
标准测试:
中定义的电源瞬态测试包括:
∙PULSE1
Pulse1定义与感性负载并联的电子设备在电源收到干扰时的浪涌波形。
如图6所示,电源从正常工作电压降到
0V
,在
100us
之后施加衰退时间为
2ms
,尖峰值
-150V
的负脉冲,测试Setup中包括
10Ω
串阻以限制负脉冲的能量。
图6.ISO7637-2Pulse1
∙PULSE2A
Pulse2A定义电流瞬间注入待测电子设备引起正电压尖峰。
当电子设备突然停止吸收电流时,存在线束中的电流由于感性不能突变,因此形成电压尖峰。
如图7所示,电源从正常工作电压在
1us
内上升到
112V,持续
0.05ms
,测试Setup中包括
2Ω
串阻以限制电压尖峰的能量。
图7.ISO7637-2Pulse
2A
∙PULSE2B
Pulse2B定义关闭点火器,使用直流电机作为电源时发生的状况,例如汽车熄火后加热器仍在工作,在自身停止旋转前,鼓风机电机可以在短时间内为系统提供直流电源。
如图8所示,电源从正常电压在
1ms
内降低到
,持续
1ms升高至
10V
,最终再缓慢下降到
。
图8.ISO7637-2Pulse
2B
∙PULSE3A&
3B
Pulse3A和3B
定义开关和继电器在操作过程中电弧放电引起的正/负电压尖峰。
如图9所示,测试Setup中包括
50Ω串阻以限制电压尖峰的能量。
图9.ISO7637-2Pulse
3A&
∙PULSE5A&
5B
Pulse5A和5B
即上文提及的
LoadDump
测试。
如图10所示,对于
Pulse5A,ISO16750-2定义的上升沿为10%(US-UA)
到90%(US-UA),而ISO7637-2定义的是10%US到90%US;
对于
Pulse5B
,ISO16750-2和ISO7637-2在US和US*的上升时间
tr
有细微的差别(图4)。
图10.ISO7637-2Pulse5A&
表3列出的是ISO7637-2和
ISO16750-2在LoadDump中测试参数的对比。
表3.LoadDump测试参数比较(ISO16750-2VS.ISO7637-2)
在ISO7637-2中有定义不同的测试等级(I
-
IV),其中I和II因为参数值设置较低,不符合实际情况,在改版的新标准中已删除,如表4所示。
表4.ISO7637-2测试等级(12V
电源系统)
∙反向电压ReverseBattery
ReverseBattery定义可能由人为因素造成的电池极性反接的情况,ISO16750-2中要求所有输入端子必须耐受
14V
反向电压
60s
无损坏。
标准还定义了另一种UseCase,如果交流电路未接熔断器,且整流二极管能耐受反向电压
60s,则对系统用
4V
的反向试验电压同时施加到DUT所有相关的输入端子上持续
∙直流供电电压MinimumAndMaximumSupplyVoltages
在ISO16750-2中定义最高电源电压为
16V
,最低供电电压
6V
对于最低电压不能满足6V的系统,标准中定义了其它规格代码(Code
B/C/D),如表5所示。
标准要求DUT在标称的工作电压范围内正常稳定地工作。
表5.ISO16750-2供电电压范围
∙过电压Overvoltage
Overvoltage,第一种情况是模拟发电机调节器失效引起的发电机输出电压上升到高于正常电压。
测试前加热箱中将DUT加热到
Tmax-20°
C。
再向DUT有效输入端施加
18V
的电压,持续
60min;
第二种情况是模拟辅助启动,首先确保DUT在室温下处于稳定状态,再向DUT有效输入端施加
的电压(Jump-start),并持续
60s。
∙叠加交流电压SuperimposedAlternatingVoltage
该项测试是模拟直流供电下的纹波电压。
ISO16750-2定义测试不同的AC电压峰峰值1V/2V
/4V,分别对应不同的严酷度(依次
1/4/2,严酷度
3
仅针对24V电源系统),扫描频率
50Hz
25kHz,叠加交流电压后的电源电压峰值为
,电源内阻
50mΩ
~100mΩ。
图11.叠加交流电测试示意图(ISO16750-2)
∙缓升缓降SlowDecreaseandIncreaseofSupplyVoltage
电源电压缓升缓降是模拟蓄电池逐渐放电和充电的过程。
测试过程中同时对DUT有效输入端进行下列试验,以
(0.5±
0.1)V/min
的线性变化率或步长不大于
25mV,将供电电压由
USmin
/minimumsupplyvoltage降到
,然后从
升到
USmin。
缓升缓降过程不要求DUT可以一直正常地工作,但要求设备在这种状况下不至于损坏,并在供电恢复正常时继续工作。
∙电压瞬态变化DiscontinuitiesinSupplyVoltage
电压瞬态变化,相比于缓升缓降的电压值变化更加迅速,它验证包括
个方面:
1.供电电压瞬时下降时,
模拟另一电路内的常规熔断器元件熔化时造成的影响;
2.检验在不同的电压骤降下DUT的复位性能,适用于具有复位功能的设备(例如,装有一个或多个微控制器的设备);
3.检验DUT在汽车启动时和启动后的特性
图12示意汽车启动时电压变化的曲线。
ISO16750-2要求测试
次,每次循环间隔
1~2s
详细测试规范定义不同应用对应
I-IV
四个测试等级,不同等级的电压值和持续时间略有差别。
图12.汽车启动电压曲线(LevelI)
∙开路和短路保护OpenCircuitAndShort-circuitProtection
开路测试是模拟一根线连接断开的电路环境。
在开路测试时,首先连接并运行
DUT,然后断开
DUT/系统接口的一条电路,最后恢复连接。
观察装置断路期间和其后的情况。
开路测试要在
DUT/系统接口的每条电路分别重复进行,断开时间
(10±
1)s
,开路阻抗
≥10MΩ
;
短路保护测试即模拟装置的输入或输出端电路短路,测试时将DUT的所有有效输入和输出端,依次连接到
USmax
/maximumsupplyvoltage,持续
(60
±
6)s
↵
防护设计
图13列出汽车电子模块输入防护电路的功能框图,详细功能包括极性保护、过压防护和告警等。
图13.车载输入防护电路功能框图
图14示意电源接口电路反接和过压保护部分电路图,此处反接保护采用二极管,应用中也可以采用PMOS管(图15),PMOS的设计相比于二极管设计成本更高,但功率损耗相对较小。
图14.缓启动和防护电路
图15.PMOS防反接电路设计
总结
图16示意汽车中典型的电源瞬态脉冲的波形,在设计中要预留足够的手段以保护设备,提高系统的可靠性。
在项目前期中,可以通过理论分析和电路仿真等手段确定合适的电路保护方案。
图16.汽车内典型电源瞬态脉冲
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- ISO 76372和ISO 167502标准与对策 76372 167502 标准 对策