第五章生活中的轴对称的导学案.docx
- 文档编号:19082524
- 上传时间:2023-04-24
- 格式:DOCX
- 页数:16
- 大小:331.77KB
第五章生活中的轴对称的导学案.docx
《第五章生活中的轴对称的导学案.docx》由会员分享,可在线阅读,更多相关《第五章生活中的轴对称的导学案.docx(16页珍藏版)》请在冰豆网上搜索。
第五章生活中的轴对称的导学案
第五章生活中的轴对称的导学案
部门:
xxx
时间:
xxx
整理范文,仅供参考,可下载自行编辑
第五章生活中的轴对称
§5.1轴对称现象
学习目标:
通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及其对称轴,会找出简单对称图形的对称轴,了解轴对称和轴对称图形的联系与区别。
b5E2RGbCAP
学习重点:
通过对现实生活实例和典型图案的观察与分析,认识轴对称和轴对称图形,会找出简单的轴对称图形的对称轴。
p1EanqFDPw
学习难点:
找出简单轴对称图形的对称轴与理解轴对称和轴对称图形的联系与区
别。
一、自主学习:
预习书115~116页并完成以下的作业:
1、如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做_______图形,这条直线叫做_______。
DXDiTa9E3d
2、对称轴是一条_______,有些轴对称图形可能有几条,甚至无数条对称轴。
3、把一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么就说这_______图形成轴对称,这条直线就是对称轴,两个图形中的对应点叫做对称点。
RTCrpUDGiT
4、轴对称图形与轴对称的区别:
区别:
轴对称是_______图形的位置关系,而轴对称图形是_______具有特殊形状的图形。
二、合作探究:
1.如图所示的几个图案中,是轴对称图形的是<)
2.如图所示,下面的5个英文字母中是轴对称图形的有<)
A.2个B.3个C.4个D.5个
3.如图所示的图案中,是轴对称图形的有<)
课堂小结
A.1个B.2个C.3个D.4个
三、展示点拨:
4.如图所示,从轴对称图形的角度来看,你觉得下面哪一个图形比较独特?
简单说明你的理由.
5.观察如图所示的图案,它们都是轴对称图形,它们各有几条对称轴?
在图中画出所有的对称轴.
四、达标检测:
6.你认识世界上各国的国旗吗?
如图7-4所示,观察下面的一些国家的国
旗,<文字代表颜色,不代表图形)是轴对称图形的有<)
A.甲乙丙丁戊B.甲乙丁戊C.甲乙丙戊D.甲乙戊
7.小红将一张正方形的红纸沿对角线对折后,得到等腰直角三角形,然后
在这张重叠的纸上剪出一个非常漂亮的图案,她拿出剪出的图案问小冬,打
开后的图案的对称轴至少有<)
A.0条B.1条C.2条D.无数条
8.如图所示的四个图形中,从几何图形的性质考虑哪一个与其他三个不同?
请指出这个图形,并简述你的理由.
五、拓展延伸:
9.如图所示,以虚线为对称轴画出图形的另一半.
六、学习收获:
§5.2探索轴对称的性质
学习目标:
探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
5PCzVD7HxA
学习重点:
理解“对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等”的性质。
学习难点:
运用对称轴的性质画出简单平面图形经过轴对称后的图形。
一、自主学习:
预习书118~119页并思考以下问题:
1.轴对称中的对应点是否关于对称轴对称?
为什么?
2.对应点所连的线段是否仍然关于原来的对称轴对称?
由此我们可以得到对应点所边的线段与对称轴是什么关系?
jLBHrnAILg
3.轴对称有哪些性质?
<1)在轴对称图形中对应点所连的线段被对称轴_______。
<2)对应线段_______,对应角_______。
<3)轴对称图形变换的特征是不改变图形的_______和_______,只改变图形的式_______。
xHAQX74J0X
<4)成轴对称的两个图形,它们的对应线段或其延长线相交,交点在_______上。
二、合作探究:
1.已知Rt△ABC中,斜边AB=2BC,以直线AC为对称轴,点B的对称点是B′,如图所示,则与线段BC相等的线段是______,与线段AB相等的线段是_______和_______.与∠B相等的角是_______和_______,因此,∠B=________.LDAYtRyKfE
2.如图,牧童在A处放牛,其家在B处。
A、B到河岸的距离分别为AC、BD,且AC=BD,已知A到河岸CD的中点的距离为500M。
Zzz6ZB2Ltk
<1)牧童从A处把牛牵到河边饮水后再回家,试问在何处饮水,所走的路程最短?
在图中作出该处并说出理由。
<2)最短路程是多少M?
三、展示点拨:
3.如图,在金水河的同一侧居住两个村庄A、B,要从河边同一点修两条水渠
到A、B两村浇灌蔬菜,问抽水站应修在金水河MN何处到村庄A、B距离一样?
4.如图,矩形ABCD沿AE折叠,使点D落在BC边上的点F处,如果
∠BAF=60°,那么∠DAE=_________.
四、达标检测:
5.以下结论正确的是<).
A.两个全等的图形一定成轴对称B.两个全等的图形一定是轴对称图形
C.两个成轴对称的图形一定全等D.两个成轴对称的图形一定不全等
6.下列说法中正确的有<).
①角的两边关于角平分线对称。
②两点关于连接它的线段的中垂线为对称。
③成轴对称的两个三角形的对应点,或对应线段,或对应角也分别成轴对称.
④到直线L距离相等的点关于L对称
A.1个B.2个C.3个D.4个
7.下列说法错误的是<).
A.等边三角形是轴对称图形。
B.轴对称图形的对应边相等,对应角相等。
C.成轴对称的两条线段必在对称轴一侧。
D.成轴对称的两个图形对应点的连线被对称轴垂直平分.
8.如图,把一张长方形纸片ABCD沿BD对折,使C点落在E处,BE与AD交于
点O,写出一组相等的线段________(不含AB=CD,AD=BC>。
五、拓展延伸:
9.如图,∠AOB内一点P,分别画出P关于OA、OB的对称点P1、P2,连接P1P2
交OA于M,交OB于N,若P1P2=5cm,则△PMN的周长为多少?
六、学习收获:
§5.3.1简单的轴对称图形
学习目标:
了解等腰、等边三角形的有关概念,探索并掌握等腰、等边三角形的性质。
学习重点:
等腰三角形的性质,等边三角形的性质。
学习难点:
掌握等腰三角形的轴对称性及其相关的性质,并能解决实际问题。
dvzfvkwMI1
一、自主学习:
预习书121~122页,并思考下列问题:
思考:
等腰三角形和等边三角形有哪些性质?
1、有两边相等的三角形是等腰三角形,它是_______图形。
2、等腰三角形顶角的_______、底边上的_______、底边上的_______重合<也称“_______”),它们所在的直线都是等腰三角形的_______。
rqyn14ZNXI
3、等腰三角形的两个底角_______。
4、三边都相等的三角形是_______三角形,也叫做_______三角形。
5、如果一个三角形有两个角相等,那么它们所对的边_______。
二、合作探究:
1、①等腰三角形的一个角是30°,则它的底角是______°
②等腰三角形的周长是24cm,一边长是6cm,则其他两边的长分别是__________
2、如图,在△ABC中,已知AB=AC,D是BC边上的中点,∠B=30°,求∠BAC和∠ADC的度数。
EmxvxOtOco
3、△ABC中,AB=AC。
(1>若∠A=50°,则∠B=______°,∠C=______°;
(2>若∠B=45°,则∠A=______°,∠C=______°;
(3>若∠C=60°,则∠A=______°,∠B=______°;
(4>若∠A=∠B,则∠A=______°,∠C=______°。
三、展示点拨:
4、如图,P、Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,
求∠BAC的度数。
5、如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE,
求∠A的度数。
四、达标检测:
6、在△ABC中,若BC=AC,∠A=58°,则∠C=_____,∠B=________。
7、等边三角形的两条中线相交所成的钝角度数是_______。
8、等腰三角形的一个内角为500,则另外两个角的度数分别是。
9、在等腰△ABC中,若AB=3,AC=7,则△ABC的周长为。
10、如图,在△ABC中,AB=AC,∠1=∠2,BD=BE,且∠A=1000,则∠DEC=。
第9题图第10题图
11、如图,AD//BC,CA平分∠BCD,∠D=1100,并且AB=AC,
求∠BAC的度数。
五、拓展延伸:
12、如图,∠ABC与∠ACB的平分线相交于F,过F作DE∥BC交AB于D,
交AC
于E,求证:
BD+EC=DE.
六、学习收获:
§5.3.2简单的轴对称图形<二)
学习目标:
体会轴对称的特征,探索并了解角的平分线、线段垂直平分线的有关
性质。
学习重点:
角、线段是轴对称图形,角的平分线、线段垂直平分线的有关性质。
学习难点:
角的平分线、线段垂直平分线的有关性质。
一、自主学习:
预习书123~126页
思考:
角平分线有什么特征?
线段垂直平分线有什么特征?
1、角是轴对称图形,它的对称轴是_______,角的平分线上的点到这个角的两边的距离_______。
2、线段是轴对称图形,它有条对称轴,它的一条对称轴是_______,另一条对称轴是线段所在的直线。
3、线段垂直平分线上的点到这条线段_______。
二、合作探究:
1、如图,在△ABC中,BC=10,边BC的垂直平分线分别交AB,
BC于点E和D,BE=6,求△BCE的周长。
2、如图,已知∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到边AB的距离为多少?
三、展示点拨:
3、如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长。
SixE2yXPq5
课堂小结
4、如图,在△ABC中,∠A=90°,BD是∠ABC的平分线,DE是BC的垂直平
分线,求∠C的度数。
四、达标检测:
5.下列图形中,不是轴对称图形的是<).
A.角B.等边三角形C.线段D.平行四边形
6.下列图形中,是轴对称图形的有<)个.①直角三角形,②线段,
③等边三角形,④正方形,⑤等腰三角形,⑥圆,⑦直角.
A.4个B.3个C.5个D.6个
7.下列说法正确的是<).
A.轴对称图形是两个图形组成的B.等边三角形有三条对称轴
C.两个全等的三角形组成一个轴对称图形。
D.直角三角形一定是轴对称图形
8.如图,CD⊥OA,CE⊥OB,D、E为垂足.
<1)若∠1=∠2,则有___________。
<2)若CD=CE,则有___________.
9.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于
点E,若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,
求线段DE的长
五、拓展延伸:
10.如图,在△ABC中,AB=AC,∠BAC=120°,D、F分别为AB、AC的中点,
DE⊥AB,GF⊥AC,E、G在BC上,BC=15cm,求EG的长度.
六、学习收获:
§5.4利用轴对称设计图案
学习目标:
能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图
形的轴对称关系设计轴对称图形。
学习重点:
掌握已知对称轴l和一个点,能画出点A关于l的轴对称点的画法。
学习难点:
掌握有关画图的技能及设计轴对称图形。
一、自主学习:
预习书128-129页,思考下列问题:
1、如何作轴对称图形
图案设计常常利用、、、手段和形式.
2、轴对称的性质:
在轴对称图形中,
<1)对应点所连的线段被对称轴_______。
<2)对应线段_______,对应角_______。
二、合作探究:
1、补全下列图形,使它成为轴对称图案
2.下图中给出了图案的一半,虚线是这个图案的对称轴.
<1)你能猜出整个图案的形状吗?
<2)画出它的另一半,证实你的猜想.
三、展示点拨:
3.如图,直线l是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。
l
4.把下列各图补成以l为对称轴的轴对称图形.
四、达标检测:
5.下列图形中对称轴最多的是<)
A.线段B.等边三角形C.正方形D.钝角
6.将一张长方形纸片折一次,折痕平分这个长方形的面积,这样的折纸
方法有< )
(A>1种(B>2种(C>4种(D>无数种6ewMyirQFL
7.下列图案是几种名车的标志,请你指出,在这几个图案中是轴对称图形的
共有< )
(A>1个(B>2个(C>3个(D>4个
8.如图是用笔尖扎重叠的纸得到的成轴对称的两个图形,则AB的对应线段是
,EF的对应线段是∠C的对应角是,
连结CE交l于O,则⊥,且=.
第8题图
五、拓展延伸:
9、根据下列语句,用三角板、圆规或直尺作图,不要求写做法:
(1)过点C作直线MN∥AB;
(2)作△ABC的高CD
(3)以CD所在直线为对称轴,作与△ABC关于直线CD对称的
△A′B′C′,并说明完成后的图形可能代表什么含义。
六、学习收获:
申明:
所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第五 生活 中的 轴对称 导学案