方波三角波正弦波函数信号发生器10页word资料.docx
- 文档编号:1906773
- 上传时间:2022-10-25
- 格式:DOCX
- 页数:11
- 大小:75.63KB
方波三角波正弦波函数信号发生器10页word资料.docx
《方波三角波正弦波函数信号发生器10页word资料.docx》由会员分享,可在线阅读,更多相关《方波三角波正弦波函数信号发生器10页word资料.docx(11页珍藏版)》请在冰豆网上搜索。
方波三角波正弦波函数信号发生器10页word资料
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
其实“教谕”在明清时还有学官一意,即主管县一级的教育生员。
而相应府和州掌管教育生员者则谓“教授”和“学正”。
“教授”“学正”和“教谕”的副手一律称“训导”。
于民间,特别是汉代以后,对于在“校”或“学”中传授经学者也称为“经师”。
在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。
1函数发生器的总方案及原理框图……………………………………………
(1)
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。
相反,它恰是提高学生语文水平的重要前提和基础。
1.1电路设计原理框图………………………………………
(1)
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
为什么?
还是没有彻底“记死”的缘故。
要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。
可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。
这样,一年就可记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。
这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。
1.2电路设计方案设计…………………………………………
(1)
2设计的目的及任务………………………………………………………
(2)
2.1课程设计的目的……………………………………………
(2)
2.2课程设计的任务与要求……………………………………
(2)
2.3课程设计的技术指标………………………………………
(2)
3各部分电路设计…………………………………………………………(3)
3.1方波发生电路的工作原理…………………………………(3)
3.2方波---三角波转换电路的工作原理……………………(3)
3.3三角波---正弦波转换电路的工作原理…………………(6)
3.4电路的参数选择及计算……………………………………(8)
3.5总电路图……………………………………………………(10)
4电路仿真…………………………………………………………………(11)
4.1方波---三角波发生电路的仿真……………………………(11)
4.2三角波---正弦波转换电路的仿真…………………………(12)
5电路的安装与调试………………………………………………………(13)
5.1方波---三角波发生电路的安装与调试……………………(13)
5.2三角波---正弦波转换电路的安装与调试…………………(13)
5.3总电路的安装与调试………………………………………(13)
5.4电路安装与调试中遇到的问题及分析解决方法…………(13)
6电路的实验结果…………………………………………………………(14)
6.1方波---三角波发生电路的实验结果………………………(14)
6.2三角波---正弦波转换电路的实验结果……………………(14)
6.3实测电路波形、误差分析及改进方法………………………(15)
7实验总结………………………………………………………………(17)
8仪器仪表明细清单………………………………………………………(18)
9参考文献…………………………………………………………………(19)
1.函数发生器总方案及原理框图
1.1原理框图
1.2函数发生器的总方案
函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。
根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。
为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与晶体管差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。
产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。
本课题采用先产生方波—三角波,再将三角波变换成正弦波的电路设计方法,
本课题中函数发生器电路组成框图如下所示:
由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
2.课程设计的目的和设计的任务
2.1设计目的
1.掌握电子系统的一般设计方法
2.掌握模拟IC器件的应用
3.培养综合应用所学知识来指导实践的能力
4.掌握常用元器件的识别和测试
5.熟悉常用仪表,了解电路调试的基本方法
2.2设计任务
设计方波——三角波——正弦波函数信号发生器
2.3课程设计的要求及技术指标
1.设计、组装、调试函数发生器
2.输出波形:
正弦波、方波、三角波;
3.频率范围:
在10-10000Hz范围内可调;
4.输出电压:
方波UP-P≤24V,三角波UP-P=8V,正弦波UP-P>1V;
3.各组成部分的工作原理
3.1方波发生电路的工作原理
此电路由反相输入的滞回比较器和RC电路组成。
RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。
设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+UT。
Uo通过R3对电容C正向充电,如图中实线箭头所示。
反相输入端电位n随时间t的增长而逐渐增高,当t趋于无穷时,Un趋于+Uz;但是,一旦Un=+Ut,再稍增大,Uo从+Uz跃变为-Uz,与此同时Up从+Ut跃变为-Ut。
随后,Uo又通过R3对电容C反向充电,如图中虚线箭头所示。
Un随时间逐渐增长而减低,当t趋于无穷大时,Un趋于-Uz;但是,一旦Un=-Ut,再减小,Uo就从-Uz跃变为+Uz,Up从-Ut跃变为+Ut,电容又开始正相充电。
上述过程周而复始,电路产生了自激振荡。
3.2方波---三角波转换电路的工作原理
方波—三角波产生电路
工作原理如下:
若a点断开,运算发大器A1与R1、R2及R3、RP1组成电压比较器,C1为加速电容,可加速比较器的翻转。
运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia,R1称为平衡电阻。
比较器的输出Uo1的高电平等于正电源电压+Vcc,低电平等于负电源电压-Vee(|+Vcc|=|-Vee|),当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,或者从低电平Vee跳到高电平Vcc。
设Uo1=+Vcc,则
将上式整理,得比较器翻转的下门限单位Uia-为
若Uo1=-Vee,则比较器翻转的上门限电位Uia+为
比较器的门限宽度
由以上公式可得比较器的电压传输特性,如图3-71所示。
a点断开后,运放A2与R4、RP2、C2及R5组成反相积分器,其输入信号为方波Uo1,则积分器的输出Uo2为
时,
时,
可见积分器的输入为方波时,输出是一个上升速度与下降速度相等的三角波,其波形关系下图所示。
a点闭合,既比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波。
三角波的幅度为
方波-三角波的频率f为
由以上两式可以得到以下结论:
1.电位器RP2在调整方波-三角波的输出频率时,不会影响输出波形的幅度。
若要求输出频率的范围较宽,可用C2改变频率的范围,PR2实现频率微调。
2.方波的输出幅度应等于电源电压+Vcc。
三角波的输出幅度应不超过电源电压+Vcc。
电位器RP1可实现幅度微调,但会影响方波-三角波的频率。
3.3三角波---正弦波转换电路的工作原理三角波——正弦波的变换电路主要由差分放大电路来完成。
差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。
特别是作为直流放大器,可以有效的抑制零点漂移,因此可将频率很低的三角波变换成正弦波。
波形变换的原理是利用差分放大器传输特性曲线的非线性。
分析表明,传输特性曲线的表达式为:
式中
——差分放大器的恒定电流;
——温度的电压当量,当室温为25oc时,UT≈26mV。
如果Uid为三角波,设表达式为
式中 Um——三角波的幅度;
T——三角波的周期。
为使输出波形更接近正弦波,由图可见:
(1)传输特性曲线越对称,线性区越窄越好;
(2)三角波的幅度Um应正好使晶体管接近饱和区或截止区。
(3)图为实现三角波——正弦波变换的电路。
其中Rp1调节三角波的幅度,Rp2调整电路的对称性,其并联电阻RE2用来减小差分放大器的线性区。
电容C1,C2,C3为隔直电容,C4为滤波电容,以滤除谐波分量,改善输出波形。
三角波—正弦波变换电路
3.4电路的参数选择及计算
1.方波-三角波中电容C1变化(关键性变化之一)
实物连线中,我们一开始很长时间出不来波形,后来将C2从10uf(理论时可出来波形)换成0.1uf时,顺利得出波形。
实际上,分析一下便知当C2=10uf时,频率很低,不容易在实际电路中实现。
2.三角波-正弦波部分
比较器A1与积分器A2的元件计算如下。
由式(3-61)得
即
取,则,取,RP1为47KΩ的点位器。
区平衡电阻
由式(3-62)
即
当时,取,则,取,为100KΩ电位器。
当时,取以实现频率波段的转换,R4及RP2的取值不变。
取平衡电阻。
三角波—>正弦波变换电路的参数选择原则是:
隔直电容C3、C4、C5要取得较大,因为输出频率很低,取,滤波电容视输出的波形而定,若含高次斜波成分较多,可取得较小,一般为几十皮法至0.1微法。
RE2=100欧与RP4=100欧姆相并联,以减小差分放大器的线性区。
差分放大器的几静态工作点可通过观测传输特性曲线,调整RP4及电阻R*确定。
3.5总电路图
三角波-方波-正弦波函数发生器实验电路
先通过比较器产生方波,再通过积分器产生三角波,最后通过差分放大器形成正弦波。
4.电路仿真
4.1方波---三角波发生电路的仿真
4.2三角波---正弦波转换电路的仿真
5电路的安装与调试
5.1方波---三角波发生电路的安装与调试
1.按装方波——三角波产生电路
1.把两块741集成块插入面包板,注意布局;
2.分别把各电阻放入适当位置,尤其注意电位器的接法;
3.按图接线,注意直流源的正负及接地端。
2.调试方波——三角波产生电路
1.接入电源后,用示波器进行双踪观察;
2.调节RP1,使三角波的幅值满足指标要求;
3.调节RP2,微调波形的频率;
4.观察示波器,各指标达到要求后进行下一部按装。
5.2三角波---正弦波转换电路的安装与调试
1.安装三角波——正弦波变换电路
1.在面包板上接入差分放大电路,注意三极管的各管脚的接线;
2.搭生成直流源电路,注意R*的阻值选取;
3.接入各电容及电位器,注意C6的选取;
4.按图接线,注意直流源的正负
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 方波 三角 正弦波 函数 信号发生器 10 word 资料