临沂市数学八年级上学期期中考试Word文档下载推荐.docx
- 文档编号:19067719
- 上传时间:2023-01-03
- 格式:DOCX
- 页数:25
- 大小:289.43KB
临沂市数学八年级上学期期中考试Word文档下载推荐.docx
《临沂市数学八年级上学期期中考试Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《临沂市数学八年级上学期期中考试Word文档下载推荐.docx(25页珍藏版)》请在冰豆网上搜索。
A.3B.4C.5D.6
10.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°
,∠B=25°
,则∠EOB的度数为()
A.60°
B.70°
C.75°
D.85°
11.多边形每一个内角都等于150°
,则从此多边形一个顶点发出的对角线有()
A.7条B.8条C.9条D.10条
12.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()
A.线段CD的中点B.OA与OB的中垂线的交点
C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点
13.下面结论:
(1)一锐角和斜边对应相等两个直角三角形全等;
(2)顶角和底角对应相等的两个等腰三角形全等;
(3)顶角和底边对应相等的两个等腰三角形全等;
(4)三个角都相等的两个三角形全等.其中正确的个数为()
A.1个B.2个C.3个D.4个
14.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()
A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等
C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC
二、填空题(每小题3分,共15分,答案直接填在题中的横线上)
15.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件__________,依据是__________.
16.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°
,∠BOC=__________.
17.如图,已知四边形ABCD中,∠C=72°
,∠D=81°
.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,则∠1+∠2=__________.
18.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为__________.
19.如图,等腰△ABC中,AB=AC,∠DBC=15°
,AB的垂直平分线MN交AC于点D,则∠A的度数是__________.
三、解答题(共58分)
20.一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.
21.如图已知△ABC,
(1)分别画出于△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;
(2)写出△A1B1C1和△A2B2C2各顶点坐标.
22.如图,在正三角形ABC的BC边上任取一点D,以CD为边向外作正三角形CDE.
求证:
BE=AD.
23.如图,已知:
AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°
,∠BCE=40°
,求∠ADB的度数.
24.如图是某城市的部分街道示意图,AB=CD,AD=BC,EF=FC,DF⊥EC.公交车甲从A站出发,按照A、D、E、F的顺序到达F站;
公交车乙从A站出发,按着A、B、C、F的顺序到达F站.如果甲、乙分别从A站同时出发,在各自的路径运行中速度及所耽误的时间均相同,猜想哪一辆公交车先到达F站?
为什么?
25.A、B两点在直线c的两侧,在c上找一点P,使点P到A、B的距离之差最大,写出作法,并说明理由.
26.将一副三角板按照如图1所示的方式放置,其中两直角顶点重合于点C,两斜边AB、DE相交于F,∠A=30°
,∠CDE=45°
.
(1)求∠EFB的度数;
(2)保持三角板ABC的位置不懂,将三角板CDE绕其直角顶点C顺时针旋转,当旋转到CD∥AB时(如图2所示),求此时∠ACD的度数.
(3)在
(2)的基础上,将三角板CDE继续绕点C顺时针旋转,直至回到图1开始的位置.在这一过程中,是否还会出现三角板CDE的一边与AB平行的情况?
如果会出现,请你画出示意图,并直接写出相应的∠ACD的大小;
如果不会出现,也请说明理由.
山东省临沂市开发区2014-2015学年八年级上学期期中数学试卷
考点:
三角形三边关系.
分析:
已知两边时,三角形第三边的范围是>两边的差,<两边的和.这样就可以确定x的范围,从而确定x的值.
解答:
解:
根据题意得:
5<x<11.
∵x是偶数,
∴可以取6,8,10这三个数.
故选D.
点评:
本题主要考查三角形中如何已知两边来确定第三边的范围.
轴对称图形.
根据轴对称图形与中心对称图形的概念求解.
A、不是轴对称图形,是中心对称图形,不符合题意;
B、不是轴对称图形,是中心对称图形,不符合题意;
C、不是轴对称图形,是中心对称图形,不符合题意;
D、是轴对称图形,符合题意.
故选:
D.
此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:
判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;
判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.
A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,﹣1)
关于x轴、y轴对称的点的坐标.
根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.
点M(1,2)关于x轴对称的点的坐标为(1,﹣2),
C.
解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于
y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
含30度角的直角三角形.
根据直角三角形30°
角所对的直角边等于斜边的一半解答.
∵直角三角形中30°
角所对的直角边为2cm,
∴斜边的长为2×
2=4cm.
故选B.
本题主要考查了直角三角形30°
角所对的直角边等于斜边的一半的性质,是基础题,熟记性质是解题的关键.
等腰三角形的性质.
分边11cm是腰长与底边两种情况讨论求解.
①11cm是腰长时,腰长为11cm,
②11cm是底边时,腰长=
(26﹣11)=7.5cm,
所以,腰长是11cm或7.5cm.
故选C.
本题考查了等腰三角形的性质,难点在于要分情况讨论.
DE是△ABC中AC边的垂直平分线,若
BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.
线段垂直平分线的性质.
利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.
∵DE是△ABC中AC边的垂直平分线,
∴AE=CE,
∴AE+BE=CE+BE=10,
∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,
本题考查了线段垂直平分线性质的应用,注意:
线段垂直平分线上的点到线段两个端点的距离相等.
含30度角的直角三角形;
因为三角形的高有三种情况,而直角三角形不合题意,故舍去,所以应该分两种情况进行分析,从而得到答案.
当等腰三角形是锐角三角形时,如图1所示
∵CD⊥AB,CD=
AC,
∴sin∠A=
=
,
∴∠A=30°
∴∠B=∠ACB=75°
;
当等腰三角形是钝角三角形时,如图2示,
∵CD⊥AB,即在直角三角形ACD中,CD=
∴∠CAD=30°
∴∠CAB=150°
∴∠B=∠ACB=15°
故其底角为15°
或75°
故选A.
此题主要考查等腰三角形的性质,含30°
的角的直角三角形的性质,在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错.
平行线的性质;
三角形内角和定理.
根据三角形的内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,然后根据两直线平行,内错角相等可得∠ADE=∠BAD.
∵∠B=46°
∴∠BA
C=180°
﹣∠B﹣∠C=180°
﹣46°
﹣54°
=80°
∵AD平分∠BAC,
∴∠BAD=
∠BAC=
×
80°
=40°
∵DE∥AB,
∴∠ADE=∠BAD=40°
本题考查了平行线的性质,三角形的内角和定理,角平分线的定义,熟记性质与概念是解题的关键.
专题:
计算题.
过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.
过P作PD⊥OB,交OB于点D,
在Rt△OPD中,cos60°
,OP=12,
∴OD=6,
∵PM=PN,PD⊥MN,MN=2,
∴MD=ND=
MN=1,
∴OM=O
D﹣MD=6﹣1=5.
此题考查了含30度直角三角形的性质,等腰三角形的性质,熟练掌握直角三角形的性质是解本题的关键.
全等三角形的判定与性质;
已知可得△ABF≌△ACE,结合三角形内角和可得∠AFB=∠AEC=95°
,在由外角性质可得,∠EOB=95°
﹣25°
=70°
∵AE=AF,AB=AC,∠A=60°
∴△ABF≌△ACE
∴∠C=∠B=25°
∴∠AEC=180°
﹣60°
=95°
∴∠EOB=95°
主要考查了三角形中内角与外角之间的关系和全等三角形的判断和性质.此题主要运用了外角等于两个不相邻的内角和、全等三角形对应角相等以及三角形内角和定理.
多边形内角与外角;
多边形的对角线.
多边形的每一个内角都等于150°
,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°
,则求得多边形的边数;
再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n﹣3)条,即可求得对角线的条数.
∵多边形的每一个内角都等于150°
∴每个外角是30°
∴多边形边数是360°
÷
30°
=12,
则此多边形从一个顶点出发的对角线共有12﹣3=9条.
本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有(n﹣3)条.
角平分线的性质.
利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.
利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交P.
本题主要考查了角平分线上的一点到两边的距离相等的性质.做题时注意题目要求要满足两个条件①到角两边距离相等,②点在CD上,要同时满足.
全等三角形的判定.
本题主要考查的是判断三角形全等的方法,判定两个三角形全等的一般方法有:
SSS、SAS、AAS、ASA、HL.
(1)一锐角和斜边对应相等两个直角三角形全等,正确;
(2)顶角和底角对应相等的两个等腰三角形全等,错误;
(3)顶角和底边对应相等的两个等腰三角形全等,正确;
(4)三个角都相等的两个三角形全等,错误.
本题考查了全等三角形的判定;
正确记忆判定三角形全等的方法,以及通过三个角相等不能判定三角形全等的方法是解题的关键.
A.△ABD和△CDB的面积
相等B.△ABD和△CDB的周长相等
全等三角形的性质.
根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.
A、∵△ABD≌△CDB,
∴△ABD和△CDB的面积相等,故本选项错误;
B、∵△ABD≌△CDB,
∴△ABD和△CDB的周长相等,故本选项错误;
C、∵△ABD≌△CDB,
∴∠A=∠C,∠ABD=∠CDB,
∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;
D、∵△ABD≌△CDB,
∴AD=BC,∠ADB=∠CBD,
∴AD∥BC,故本选
项错误;
本题考查了全等三角形的性质和判定的应用,注意:
全等三角形的对应边相等,对应角相等.
15.如图,点F、C在线段BE上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件BC=DF,依据是SAS.
开放型.
要使△ABC≌△DEF,已知∠1=∠2,BC=EF,添加边的话应添加对应边,符合SAS来判定.
AC=DF.
在△ABC和△DEF中,
∴△ABC≌△DEF(SAS).
故答案为:
AC=DF,SAS.
点评
:
本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:
SSS、SAS、ASA、AAS、HL.
注意:
AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
,∠BOC=125°
角平分线的性质.
根据在角的内部到角的两边距离相等的点在角的平分线上判断出OB、OC分别平分∠ABC和∠ACB,再根据三角形的内角和定理求出∠ABC+∠ACB,然后求出∠OBC+∠OCB,再次利用三角形的内角和定理列式计算即可得解.
∵OF=OD=OE,
∴OB、OC分别平分∠ABC和∠ACB,
∵∠BAC=70°
∴∠ABC+∠ACB=180°
﹣70°
=110°
∴∠OBC+∠OCB=
(∠ABC+∠ACB)=
110°
=55°
∴∠BOC=180°
﹣(∠OBC+∠OCB)=180°
﹣55°
=125°
125°
本题考查了在角的内部到角的两边距离相等的点在角的平分线上的性质,三角形的内角和定理,角平分线的定义,熟记性质并准确识图是解题的关键.
.沿EF折叠四边形,使点A、B分别落在四边形内部的点A′、B′处,则∠1+∠2=54°
翻折变换(折叠问题).
根据四边形的内角和为180°
,有∠1+∠2+∠FEA1+∠EFB1+∠D+∠C=360°
,又因为∠C=72°
,则∠FEA1+∠EFB1+∠1+∠2=207°
又因为∠AEF+∠BFE+∠FEA1+∠EFB1+∠1+∠2=360°
,∠FEA1+∠EFB1=∠AEF+∠BFE,即可求出答案.
连接AA'
、BB'
由题意得:
∠1+∠2+∠FEA1+∠EFB1+∠D+∠C=360°
又∵∠C=72°
∴∠FEA1+∠EFB1+∠1+∠2=207°
又∵∠AEF+∠BFE+∠FEA1+∠EFB1+∠1+∠2=360°
,四边形A1B1FE是四边形ABEF翻转得到的,
∴∠FEA1+∠EFB1=∠AEF+∠BFE,
∴∠FEA1+∠EF
B1=153°
∴∠1+∠2=54°
故答案是:
54°
本题考查了翻转变换及多边形的内角和的知识,有一定难度,找准各个角的关系是关键.
18.如图所示,点P为∠AOB
内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.
轴对称的性质.
P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.
∵P点关于OA的对称是点P1,P点关于OB的对称点P2,
∴PM=P1M,PN=P2N.
∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.
15
本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.
,AB的垂直平分线MN交AC于点D,则∠A的度数是50°
线段垂直平分线的性质;
根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.
∵MN是AB的垂直平分线,
∴AD=BD,
∴∠A=∠ABD,
∵∠DBC=15°
∴∠ABC=∠A+15°
∵AB=AC,
∴∠C=∠ABC=∠A+15°
∴∠A+∠A+15°
+∠A+15°
=180°
解得∠A=50°
50°
本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形的性质,熟记性质并用∠A表示出△ABC的另两个角,然后列出方程是解题的关键.
多边形内角与外角.
一个多边形的内角和是它的外角和的4倍,而外角和是360°
,则内角和是4×
360°
.n边形的内角和可以表示成(n﹣2)•180°
,设这个多边形的边数是n,就得到方程,从而求出边数.
设这个多边形有n条边.
(n﹣2)×
180°
=360°
4,
解得n=10.
故这个多边形的边数是10.
此题比较简单,只要结合多边形的内角和公式寻求等量关系,构建方程求解即可.
作图-轴对称变换.
(1)根据关于x、y轴对称的点的坐标特点画出△A1B1C1和△A2B2C2即可;
(2)根据各点在坐标系中的位置写出各点坐标即可.
(1)如图所示;
(2)由图可知,
A1(0,2),B1(2,4),C1(4,1),A2(0,﹣2),B2(﹣2,﹣4),C2(﹣4,﹣1).
本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.
22.如图,在正三角形ABC的BC边上任取一点D,以CD为边向外作正三角形CDE.求证:
全等三角形的判定与性质.
证明题.
根据等边三角形的性质,可先证△ACD≌△BCE,从而得出结论.
证明:
∵△ABC是正三角形,
∴AC=BC,∠ACD=∠ACB=60°
∵△CDE是正三角形,
∴CD=CE,∠BCE=∠DCE=60°
在△ACD和△BCE中,
∴△ACD≌△BCE(SAS),
∴BE=AD.
本题考查了三角形全等的判定及性质;
三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 临沂市 数学 年级 上学 期中考试