物理学教程第二版课后答案15.docx
- 文档编号:1904017
- 上传时间:2022-10-25
- 格式:DOCX
- 页数:10
- 大小:125.01KB
物理学教程第二版课后答案15.docx
《物理学教程第二版课后答案15.docx》由会员分享,可在线阅读,更多相关《物理学教程第二版课后答案15.docx(10页珍藏版)》请在冰豆网上搜索。
物理学教程第二版课后答案15
第十五章 狭义相对论
15-1 有下列几种说法:
(1)两个相互作用的粒子系统对某一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;
(2)在真空中,光的速度与光的频率、光源的运动状态无关;
(3)在任何惯性系中,光在真空中沿任何方向的传播速率都相同.
其中哪些说法是正确的?
( )
(A)只有
(1)、
(2)是正确的 (B)只有
(1)、(3)是正确的
(C)只有
(2)、(3)是正确的(D)三种说法都是正确的
分析与解 物理相对性原理和光速不变原理是相对论的基础.前者是理论基础,后者是实验基础.按照这两个原理,任何物理规律(含题述动量守恒定律)对某一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108m·s-1.迄今为止,还没有实验能推翻这一事实.由此可见,
(2)(3)说法是正确的,故选(C).
15-2 按照相对论的时空观,判断下列叙述中正确的是( )
(A)在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件
(B)在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件
(C)在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件
(D)在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地
(E)在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时
分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt和Δx,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为
和
讨论上述两式,可对题述几种说法的正确性予以判断:
说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt=0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S系中发生的地点是同地(Δx=0)还是不同地(Δx≠0).说法(D)(E)也是不正确的,由上述两式可知:
在S系发生两个同时(Δt=0)不同地(Δx≠0)事件,在S′系中一定是既不同时(Δt′≠0)也不同地(Δx′≠0),但是在S系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.
15-3 有一细棒固定在S′系中,它与Ox′轴的夹角θ′=60°,如果S′系以速度u沿Ox方向相对于S系运动,S系中观察者测得细棒与Ox轴的夹角( )
(A)等于60° (B)大于60° (C)小于60°
(D)当S′系沿Ox正方向运动时大于60°,而当S′系沿Ox负方向运动时小于60°
分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即Ox轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与Ox轴夹角将会大于60°,此结论与S′系相对S系沿Ox轴正向还是负向运动无关.由此可见应选(C).
15-4 一飞船的固有长度为L,相对于地面以速度v1作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v2的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( )(c表示真空中光速)
(A) (B) (C) (D)
分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L、v2以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.故选(C).
讨论 从地面测得的上述时间间隔为多少?
建议读者自己求解.注意此处要用到相对论时空观方面的规律了.
15-5 设S′系以速率v=0.60c相对于S系沿xx′轴运动,且在t=t′=0时,x=x′=0.
(1)若有一事件,在S系中发生于t=2.0×10-7s,x=50m处,该事件在S′系中发生于何时刻?
(2)如有另一事件发生于S系中t=3.0×10-7s,x=10m处,在S′系中测得这两个事件的时间间隔为多少?
分析 在相对论中,可用一组时空坐标(x,y,z,t)表示一个事件.因此,本题可直接利用洛伦兹变换把两事件从S系变换到S′系中.
解
(1)由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为
(2)同理,第二个事件发生的时刻为
所以,在S′系中两事件的时间间隔为
15-6 设有两个参考系S和S′,它们的原点在t=0和t′=0时重合在一起.有一事件,在S′系中发生在t′=8.0×10-8s,x′=60m,y′=0,z′=0处,若S′系相对于S系以速率v=0.6c沿xx′轴运动,问该事件在S系中的时空坐标各为多少?
分析 本题可直接由洛伦兹逆变换将该事件从S′系转换到S系.
解 由洛伦兹逆变换得该事件在S系的时空坐标分别为
y=y′=0
z=z′=0
15-7 一列火车长0.30km(火车上观察者测得),以100km·h-1的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?
分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt=t2-t1=0.火车的长度是相对火车静止的观察者测得的长度(注:
物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δx′=x′2-x′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述基本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为
(1)
(2)
将已知条件代入式
(1)可直接解得结果.也可利用式
(2)求解,此时应注意,式中为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论,运动物体(火车)有长度收缩效应,即.考虑这一关系方可利用式
(2)求解.
解1 根据分析,由式
(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为
负号说明火车上的观察者测得闪电先击中车头x′2处.
解2 根据分析,把关系式代入式
(2)亦可得
与解1相同的结果.相比之下解1较简便,这是因为解1中直接利用了=0.30km这一已知条件.
15-8 在惯性系S中,某事件A发生在x1处,经过2.0×10-6s后,另一事件B发生在x2处,已知x2-x1=300m.问:
(1)能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?
(2)在S′系中,上述两事件的时间间隔为多少?
分析 在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v相对S系沿x轴正向运动,因在S系中两事件的时空坐标已知,由洛伦兹时空变换式,可得
(1)
(2)
两事件在S′系中发生在同一地点,即x′2-x′1=0,代入式
(1)可求出v值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式
(2)可得两事件在S′系中的时间间隔.对于本题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt′为固有时间间隔(原时),由时间延缓效应关系式可直接求得结果.
解
(1)令x′2-x′1=0,由式
(1)可得
(2)将v值代入式
(2),可得
这表明在S′系中事件A先发生.
15-9 设在正负电子对撞机中,电子和正电子以速度0.90c相向飞行,它们之间的相对速度为多少?
分析 设对撞机为S系,沿x轴正向飞行的正电子为S′系.S′系相对S系的速度v=0.90c,则另一电子相对S系速度ux=-0.90c,该电子相对S′系(即沿x轴正向飞行的电子)的速度u′x即为题中所求的相对速度.在明确题目所述已知条件及所求量的物理含义后,即可利用洛伦兹速度变换式进行求解.
解 按分析中所选参考系,电子相对S′系的速度为
式中负号表示该电子沿x′轴负向飞行,正好与正电子相向飞行.
讨论 若按照伽利略速度变换,它们之间的相对速度为多少?
15-10 设想有一粒子以0.050c的速率相对实验室参考系运动.此粒子衰变时发射一个电子,电子的速率为0.80c,电子速度的方向与粒子运动方向相同.试求电子相对实验室参考系的速度.
分析 这是相对论的速度变换问题.取实验室为S系,运动粒子为S′系,则S′系相对S系的速度v=0.050c.题中所给的电子速率是电子相对衰变粒子的速率,故u′x=0.80c.
解 根据分析,由洛伦兹速度逆变换式可得电子相对S系的速度为
15-11 设在宇航飞船中的观察者测得脱离它而去的航天器相对它的速度为1.2×108m·s-1i.同时,航天器发射一枚空间火箭,航天器中的观察者测得此火箭相对它的速度为1.0×108m·s-1i.问:
(1)此火箭相对宇航飞船的速度为多少?
(2)如果以激光光束来替代空间火箭,此激光光束相对宇航飞船的速度又为多少?
请将上述结果与伽利略速度变换所得结果相比较,并理解光速是运动体的极限速度.
分析 该题仍是相对论速度变换问题.
(2)中用激光束来替代火箭,其区别在于激光束是以光速c相对航天器运动,因此其速度变换结果应该与光速不变原理相一致.
解 设宇航飞船为S系,航天器为S′系,则S′系相对S系的速度
v=1.2×108m·s-1,空间火箭相对航天器的速度为u′x=1.0×108m·s-1,激光束相对航天器的速度为光速c.由洛伦兹变换可得:
(1)空间火箭相对S系的速度为
(2)激光束相对S系的速度为
即激光束相对宇航飞船的速度仍为光速c,这是光速不变原理所预料的.如用伽利略变换,则有ux=c+v>c.这表明对伽利略变换而言,运动物体没有极限速度,但对相对论的洛伦兹变换来说,光速是运动物体的极限速度.
15-12 以速度v沿x方向运动的粒子,在y方向上发射一光子,求地面观察者所测得光子的速度.
分析 设地面为S系,运动粒子为S′系.与上题不同之处在于,光子的运动方向与粒子运动方向不一致,因此应先求出光子相对S系速度u的分量ux、uy和uz,然后才能求u的大小和方向.根据所设参考系,光子相对S′系的速度分量分别为u′x=0,u′y=c,u′z=0.
解 由洛伦兹速度的逆变换式可得光子相对S系的速度分量分别为
所以,光子相对S系速度u的大小为
速度u与x轴的夹角为
讨论 地面观察者所测得光子的速度仍为c,这也是光速不变原理的必然结果.但在不同惯性参考系中其速度的方向却发生了变化.
15-13 在惯性系S中观察到有两个事件发生在同一地点,其时间间隔为4.0s,从另一惯性系S′中观察到这两个事件的时间间隔为6.0s,试问从S′系测量到这两个事件的空间间隔是多少?
设S′系以恒定速率相对S系沿xx′轴运动.
分析 这是相对论中同地不同时的两事件的时空转换问题.可以根据时间延缓效应的关系式先求出S′系相对S系的运动速度v,进而得到两事件在S′系中的空间间隔Δx′=vΔt′(由洛伦兹时空变换同样可得到此结果).
解 由题意知在S系中的时间间隔为固有的,即Δt=4.0s,而Δt′=6.0s.根据时间延缓效应的关系式,可得S′系相对S系的速度为
两事件在S′系中的空间间隔为
15-14 在惯性系S中,有两个事件同时发生在xx′轴上相距为1.0×103m的两处,从惯性系S′观测到这两个事件相距为2.0×103m,试问由S′系测得此两事件的时间间隔为多少?
分析 这是同时不同地
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物理学 教程 第二 课后 答案 15