史上最全的难题排列组合大全Word文档下载推荐.docx
- 文档编号:18926745
- 上传时间:2023-01-02
- 格式:DOCX
- 页数:17
- 大小:116.70KB
史上最全的难题排列组合大全Word文档下载推荐.docx
《史上最全的难题排列组合大全Word文档下载推荐.docx》由会员分享,可在线阅读,更多相关《史上最全的难题排列组合大全Word文档下载推荐.docx(17页珍藏版)》请在冰豆网上搜索。
四.定序问题倍缩空位插入策略
例人排队,其中甲乙丙3人顺序一定共有多少不同的排法
(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:
(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有
种方法,其余的三个位置甲乙丙共有1种坐法,则共有
种方法。
思考:
可以先让甲乙丙就坐吗?
(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有方法
定序问题可以用倍缩法,还可转化为占位插
空模型处理
10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?
五.重排问题求幂策略
例5.把6名实习生分配到7个车间实习,共有多少种不同的分法
完成此事共分六步:
把第一名实习生分配到车间有7种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有
允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n不同的元素没有限制地安排在m个位置上的排列数为种
1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为42
2.某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法
六.环排问题线排策略
例6.8人围桌而坐,共有多少种坐法?
围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人
并从此位置把圆形展成直线其余7人共有(8-1)!
种排法即
!
一般地,n个不同元素作圆形排列,共有(n-1)!
种排法.如果从n个不同元素中取出m个元素作圆形排列共有
6颗颜色不同的钻石,可穿成几种钻石圈120
七.多排问题直排策略
例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法
8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有
种,再排后4个位置上的特殊元素丙有
种,其余的5人在5个位置上任意排列有
种,则共有
种
一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究.
有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是346
八.排列组合混合问题先选后排策略
例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.
第一步从5个球中选出2个组成复合元共有
种方法.再把4个元素(包含一个复合元素)装入4个不同的盒内有
种方法,根据分步计数原理装球的方法共有
解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?
一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有192种
九.小集团问题先整体后局部策略
例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?
把1,5,2,4当作一个小集团与3排队共有
种排法,再排小集团内部共有
种排法,由分步计数原理共有
种排法.
小集团排列问题中,先整体后局部,再结合其它策略进行处理。
1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为
2.5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有
十.元素相同问题隔板策略
例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?
解:
因为10个名额没有差别,把它们排成一排。
相邻名额之间形成9个空隙。
在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有
种分法。
将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为
1.10个相同的球装5个盒中,每盒至少一有多少装法?
2.
求这个方程组的自然数解的组数
十一.正难则反总体淘汰策略
例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的
取法有多少种?
这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。
这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有
只含有1个偶数的取法有
和为偶数的取法共有
。
再淘汰和小于10的偶数共9种,符合条件的取法共有
有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.
我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的
抽法有多少种?
十二.平均分组问题除法策略
例12.6本不同的书平均分成3堆,每堆2本共有多少分法?
解:
分三步取书得
种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF,若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则
中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有
种取法,而这些分法仅是(AB,CD,EF)一种分法,故共有
平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以(为均分的组数)避免重复计数。
1将13个球队分成3组,一组5个队,其它两组4个队,有多少分法?
(
)
名学生分成3组,其中一组4人,另两组3人但正副班长不能分在同一组,有多少种不同的
分组方法(1540)
3.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安
排2名,则不同的安排方案种数为______(
十三.合理分类与分步策略
例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法
10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。
选上唱歌人员为标准进行研究
只会唱的5人中没有人选上唱歌人员共有
种,只会唱的5人中只有1人选上唱歌人员
种,只会唱的5人中只有2人选上唱歌人员有
种,由分类计数原理共有
种。
解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。
分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。
1.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有34
2.3成人2小孩乘船游玩,1号船最多乘3人,2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船,这3人共有多少乘船方法.(27)
本题还有如下分类标准:
*以3个全能演员是否选上唱歌人员为标准
*以3个全能演员是否选上跳舞人员为标准
*以只会跳舞的2人是否选上跳舞人员为标准
都可经得到正确结果
十四.构造模型策略
例14.马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?
把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有
一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决
某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?
(120)
十五.实际操作穷举策略
例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法
从5个球中取出2个与盒子对号有
种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5号球,3,4,5号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有
种
3号盒4号盒5号盒
对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果
1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种?
(9)
2.给图中区域涂色,要求相邻区域不同色,现有4种可选颜色,则不同的着色方法有72种
十六.分解与合成策略
例16.30030能被多少个不同的偶数整除
分析:
先把30030分解成质因数的乘积形式30030=2×
3×
5×
7×
11×
13
依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,
所有的偶因数为:
练习:
正方体的8个顶点可连成多少对异面直线
我们先从8个顶点中任取4个顶点构成四体共有体共
每个四面体有
分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案,每个比较复杂的问题都要用到这种解题策略
3对异面直线,正方体中的8个顶点可连成
对异面直线
十七.化归策略
例17.25人排成5×
5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?
将这个问题退化成9人排成3×
3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如此继续下去.从3×
3方队中选3人的方法有
再从5×
5方阵选出3×
3方阵便可解决问题.从5×
5方队中选取3行3列有
选法所以从5×
5方阵选不在同一行也不在同一列的3人有
选法。
处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题
某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?
十八.数字排序问题查字典策略
例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?
数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数。
用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是3140
十九.树图策略
例19.
人相互传球,由甲开始发球,并作为第一次传球,经过
次传求后,球仍回到甲的手中,则不同的传球方式有______
对于条件比较复杂的排列组合问题,不易用
公式进行运算,树图会收到意想不到的结果
分别编有1,2,3,4,5号码的人与椅,其中
号人不坐
号椅(
)的不同坐法有多少种?
二十.复杂分类问题表格策略
例20.有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法
二十一:
住店法策略
解决“允许重复排列问题”要注意区分两类元素:
一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.
例21.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有.
因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得7
种.
染色问题的计数方法
一、区域染色问题
1.根据乘法原理,对各个区域分步染色,这是处理这类问题的基本的方法。
例1要用四种颜色给四川、青藏、西藏、云南四省(区)的地图染色(图1)每一省(区)一种颜色,只要求相邻的省(区)不同色,则不同染色的方法有多少种?
分析先给
四川染色有4种方法,再给青海染色有3种方法,接着给西藏染色有2种方法,最后给云南染色有2种方法,根据乘法原理,不同的染色方法共有4×
2×
2=48种
2.根据共用了多少种颜色分类讨论,分别计算出各种情形的种数,再用加法原理求出不同年拾方法种数。
例2(2003年全国高考题)如图2,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?
分析依题意至少要
选用3种颜色。
(1)当选用三种颜色时,区域2与4必须同色,区域3与5必须同色,有
(2)当用四种颜色时,若区域2与4同色,则区域3与5不同色,有
种;
若区域3与5同色,则区域2与4不同色,有
种,故用四种颜色时共有2
由加法原理可知满足题意的着色方法共有
+2
=24+2×
24=72种。
3.根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用加法原理求出不同染色方法数。
例3用红、黄、蓝、白、黑五种颜色涂在“田”字形的四个小方格内(图3),每格涂一种颜色,相邻的两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?
(1)四格涂不同的颜色,方法数为
;
(2)有且仅有两格涂相同的颜色,即只有一组对角小方格涂相同颜色,涂法种数为2
(1)两组对角小方格涂相同颜色,涂法种数为
因此,所求的涂法种数为
+
=260种
3.根据相间区域使用颜色的种类分类讨论
例4如图4,一个六边形的6个区域A、B、C、D、E、F,现给这6个区域着色,要求同一区域染同一种颜色,相邻的两个区域不得使用
同一颜色,现有4种不同的颜色可供选择,则有多少种不同的着色方法。
(1)当相间区域A、C、E着同一种颜色时,有4种着色方法,此时,B、D、F各有3种着色方法故有4×
3=108种方法
(2)当相间区域A、C、E着两种不同颜色时,有
种着色方法,此时B、D、F有3×
2种着色方法,故共有
×
2=432种着色方法。
(1)当相间区域A、C、E着三种不同颜色时,有
种着色方法,此时B、D、F各有2种着色方法,此时共有
2=192种方法。
故总计有108+432+192=732种方法
二点染色问题
点染色问题,要注意对各点依次染色,主要方法有:
(1)根据共用了多少种颜色分类讨论;
(2)根据相对顶点是否同色分类讨论。
例5将一个四棱锥S-ABCD的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?
解法1满足题设条件的染色至少要用三种颜色
(1)若恰用三种颜色,可先从五种颜色中任选一种染顶点S,再从余下的四种颜色中任选两种染A、B、C、D四点,,此时只能A与C,B与D分别同色,故有
=60种方法。
(1)若恰用四种颜色,可先从五种颜色中任选一种染顶点S,再从余下的四种颜色中任选两种染A与B,由于A、B颜色可以交换,故有
种染法;
再从余下的两种颜色种任选一种染D或C,而D与C中另一个只需染与其相对顶点同色即可,故有
=240中方法。
(1)若恰用五种颜色,有
=120种染法。
综上,满足题意的染色方法数为60+240+120=420种。
解法2设想染色按S-A-B-C-D的顺序进行,对S、A、B染色,有5×
4×
3=60种染色方法。
由于C点的颜色可能与A同色或不同色,这影响到D点颜色的选取方法数,故分类讨论:
C与A同色时(此时C对颜色的选取方法唯一),D与A、C、S不同色,有3种选择;
C与A不同色时,C有2种选择的颜色,D有2种颜色可供选择,从而对C、D染色有1×
3+2×
2=7种染色方法。
由乘法原理,总的染色方法数是60×
7=420种
评注图中的连接状况是本质条件,而是否空间图形则无关紧要,试看下面的两个问题,尽管与例5表述方式不同,但具有相同的数学模型,所以都可以转化为例5来解决。
您不妨一试。
(1)用五种颜色给图中的5个车站的候车牌A、B、C、D、E染色,要求相邻两个车站间的候车牌的颜色不同,有多少种不同的染色方法(图6)
(2)如图7所示为一张有5个行政区划的地图,今要用5种颜色给地图着色,要求相邻的区域不同色,共有多少种方案?
三、线段染色问题,要注意对各条线段依次讨论,主要方法有:
(2)根据相对的线段是否同色分类讨论。
例5用红、黄、蓝、白、四种颜色染矩形ABCD的四条边,每条边只染一种颜色,且使相邻两边染不同的颜色,如果颜色可能反复使用,共有多少种不同的染色方法(图8)
解法1
(1)使用四种颜色有
(2)使用三种颜色染色,则必须将一组对边染成同色,故有
(3)使用两种颜色时,则两组对边必须分别同色,有
因此,所求的染色方法数为
=84种
解法2染色按AB-BC-CD-DA的顺序进行,对AB、BC染色有4×
3=12种染色方法。
由于CD的颜色可能与AB同色或不同色,这影响到DA颜色的选取方法数,故分类讨论:
当CD与AB同色时,这时CD对颜色的选取方法唯一,则DA有3种颜色可供选择;
当CD与AB不同色时,CD有2种可供选择的颜色,DA有2种可供选择的颜色,从而对CD、DA染色有1×
由乘法原理,总的染色方法数为12×
7=84种。
利用相同的方法可解决例7
例6中央电视台“正大综艺”节目的现场观众来自4个单位,分别在图9中4个区域内坐定。
有4种不同的颜色服装,每个区域的观众必须穿同种颜色的服装,且相邻两个区域的颜色不同,不相邻区域颜色相同与否不受限制,那么不同的着色方法
共有多少种?
例7用六种颜色给正四面体A-BCD的每条棱染色,要求每条棱只能染一种颜色且共顶点的棱染不同的颜色,问有多少种不同的染色方法(图10)
分析正四面体有三组对棱AB与CD、AC与BD、AD与BC。
满足题设条件的染色至少要用三种颜色。
解
(1)若恰用三种颜色染色,则每组对棱必须染同一颜色,而这三组间的颜色不同,故有
(2)若恰用四种颜色染色,则三组对棱中有两组对棱的组内对棱同色,但组与组之间不同色,故有
(3)若恰用五种颜色染色,则三组对棱中有一组对棱染同一种颜色,故有
(4)若恰用六种颜色染色,则有
种不同的方法。
综上,满足题意的总的染色方法数为
=4080种
四面染色问题
例9(1996年全国高中数学联赛题)从给定的六种不同颜色中选用若干种颜色,将一个正方体的6个面染色,每两个具有公共棱的面染成不同的颜色,则不同的染色方案共有多少种?
(注:
如果我们对两个相同的正方体染色后,可以通过适当翻转,使得两个正方体的上、下、左、右、前、后6个面对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同)
分析显然,至少需要三种颜色,由于有多种不同情况,仍应考虑利用加法原理分类、乘法原理分步进行讨论。
解根据共用了多少种不同的颜色分类讨论。
(1)用了六种颜色,确定某种颜色(例如红色)所染面为下底(根据题注,对此处的两种不同染色方案,这里的“第一面”总是相同的),则上底颜色可有5种选择,在上、下底已染好后,再确定其余4种颜色中的某一种所染面为左侧面,则其余3个面有3!
种染色方案,根据乘法原理n1=5×
3!
=30种
(2)用了五种颜色,选定五种颜色有
=6种方法,必有两面同色(必为相对面),确定为上、下底面,其颜色可有5种选择,再确定一种颜色为左侧面,此时的方法数取决于右侧面的颜色,有3种选择(前后面可通过翻转交换)n2=
5×
3=90
(3)用了四种颜色,仿上分析可得n3=
=90
(4)用了三种颜色,n4=
=20
故总的染色方案有n=n1+n2+n3+n4=230种。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 史上最全 难题 排列组合 大全