最新314数学农大纲资料Word下载.docx
- 文档编号:18881457
- 上传时间:2023-01-01
- 格式:DOCX
- 页数:10
- 大小:38.79KB
最新314数学农大纲资料Word下载.docx
《最新314数学农大纲资料Word下载.docx》由会员分享,可在线阅读,更多相关《最新314数学农大纲资料Word下载.docx(10页珍藏版)》请在冰豆网上搜索。
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4、掌握基本初等函数的性质及其图形,了解初等函数的概念
5、了解数列极限和函数极限(包括坐极限和右极限)的概念。
6、了解极限的性质与极限存在的两个准则,掌握极限四则运算法则,掌握利用两个重要极限求极限的方法。
7、理解无穷小的概念和基本性质,掌握无穷小量的比较方法,了解无穷大量的概念及其与无穷小量的关系。
8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)并会应用这些性质。
二、一元函数微分学
导数和微积分的概念
导数的几何意义和经济意义
函数的可导性与连续性之间的关系
平面曲线的切线和法线
导数和微分的四则运算
基本初等函数的导数
复合函数、反函数和隐函数的微分法
高阶导数
一阶微分形式的不变性
微分中值定理
洛必达(L’Hospital)法则
函数单调性的判别
函数的极值
函数图形的凹凸性、拐点及渐近线
函数图形的描绘
函数的最大值和最小值
1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
2、掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数”。
3、了解高阶导数的概念,会求简单函数的高阶导数,掌握二阶导数的求法。
4、了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。
5、理解罗尔(Rolle)定理和拉格郎日(Lagrange)中值定理,了解柯西(Cauchy)中值定理,掌握这三(两)个定理的简单应用。
6、会用洛必达法则求极限。
7、掌握函数单调性的判别方法,了解函数极限的概念,掌握函数极值、最大值和最小值的求法及其应用.
8、会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线。
9、会描绘简单函数图形。
三、一元函数的积分学
原函数和不定积分的概念
不定积分的基本性质
基本积分公式
定积分的概念和基本性质
定积分中值定理
积分上限的函数及其导数
牛顿-莱布尼茨(Newton-Leibniz)公式
不定积分和定积分的换元积分法与分部积分法
反常(广义)积分
定积分的应用。
1、理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。
2、了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法。
3、会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题。
4、了解无穷区间上的反常积分的概念,会计算无穷区间上的反常积分
四、多元函数微积分学
多元函数的概念
二元函数的几何意义
二元函数的极限与连续的概念
有界闭区域上二元连续函数的性质
多元函数偏导数的概念与计算
多元复合函数的求导法与隐函数求导法二阶偏导数
全微分
多元函数的极值和条件极值、最大值和最小值
二重积分的概念、基本性质和计算
无界区域上简单的反常二重积分。
1、了解多元函数的概念,了解二元函数的几何意义。
2、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。
3、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数。
4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格郎日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题。
5、了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算。
五、常微分方程
常微分方程的基本概念
变量可分离的微分方程
齐次微分方程
一阶线性微分方程
1、了解微分方程及其解、阶、通解、初始条件和特解等概念。
2、掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法。
线
性
代
数
一、行列式
行列式的概念和基本性质
行列式按行(列)展开定理
1、了解行列式的概念,掌握行列式的性质。
2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。
二、矩阵
矩阵的概念
矩阵的线性运算
矩阵的乘法
方阵的幂
方阵乘积的行列式
矩阵的转置
逆矩阵的概念和性质
矩阵可逆的充分必要条件
伴随矩阵
矩阵的初等变换
初等矩阵
矩阵的秩
矩阵的等价
分块矩阵及其运算
1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵,反对称矩阵及正交矩阵等的定义和性质。
2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解(了解)伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4、了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。
5、了解分块矩阵的概念,掌握分块矩阵的运算法则。
三、向量
向量的概念
向量的线性组合与线性表示
向量组的线性相关与线性无关
向量组的极大线性无关组
等价向量组
向量组的秩
向量组的秩与矩阵的秩之间的关系
向量的内积
线性无关向量组的正交规范化方法。
1、了解向量的概念,掌握向量的加法和数乘运算法则。
2、理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。
3、理解向量组的极大线性无关组和秩的概念,会求向量组的极大线性无关组及秩。
4、了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。
5、了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法。
四、线性方程组
线性方程组的克莱母(Cramer)法则
线性方程组有解和无解的判定
齐次线性方程组的基础解系和通解
非齐次线性方程组的解与相应的齐次线性方程组(导出组)的解之间的关系
非齐次线性方程组的通解。
1、会用克莱母法则解线性方程组。
2、掌握非齐次线性方程组有解和无解的判定方法。
3、理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。
4、理解(了解)非齐次线性方程组的结构及通解的概念。
5、掌握用初等行变换求解线性方程组的方法。
五、矩阵的特征值和特征向量
矩阵的特征值和特征向量的概念、性质
相似矩阵的概念及性质
矩阵可相似对角化的充分必要条件及相似对角矩阵、实对称矩阵的特征值、特征向量及其相似对角矩阵。
1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。
2、理解(了解)矩阵相似的概念和掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握(会)将矩阵化为相似对角矩阵的方法。
3、掌握(了解)实对称矩阵的特征值和特征向量的性质。
六、二次型(红)
二次型及其矩阵表示
合同变换与合同矩阵
二次型的秩
惯性定理
二次型的标准型和规范性
用正交变换和配方法化二次型为标准型
二次型及其矩阵的正定性
1、了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念
2、了解二次型的秩的概念,了解二次型的标准型、规范型等概念,了解惯性定理,会用正交变换和配方法化二次型为标准型.
3、理解正定二次型、正定矩阵的概念,并掌握其判别法.
概
率
论
一、随机事件和概率
随机事件与样本空间
事件的关系与运算
完全事件组
概率的概念
概率的基本性质
古典型概率
几何型概率
条件概率
概率的基本公式
事件的独立性
独立重复试验
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。
2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握计算概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯(Bayes)公式等。
3、理解事件的独立性的概念,掌握用事件独立性进行概率计算;
理解独立重复试验的概念,掌握计算有关事件概率的方法。
二、
随机变量及其概率分布
随机变量
随机变量分布函数的概念及其性质
离散型随机变量的概率分布
连续型随机变量的概率密度
常见随机变量的分布
随机变量函数的分布
1、理解随机变量的概念,理解分布函数 F(x)=P{X≤x}(-∞<x<
+∞)的概念及性质,会计算与随机变量相联系的事件的概率。
2、理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用。
3、掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
3、理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2)、指数分布及其应用 其中参数为λ(λ>
0)的指数分布的密度函数为
4、会求随机变量函数的分布。
三、随机变量的联合概率分布
多维随机变量及其分布函数
二维随机变量及其分布二维离散型随机变量的概率分布和边缘分布和条件分布
二维连续型随机变量的概率密度和边缘概率密度和条件密度
随机变量的独立性和不相关性
常见二维随机变量的分布
两个及两个以上随机变量的函数的分布。
1、理解多维随机变量的分布函数的概念和基本性质。
1、理解二维随机变量的概念
理解二维随机变量的分布的概念和性质理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握两个随机变量的边缘分布和条件分布,理解二维连续型随机变量的概率密度和边缘密度,会求与二维离散型随机变量相关事件的概率。
2、理解随机变量的独立性和不相关性的概念,掌握(了解)随机变量相互独立的条件;
理解随机变量的不相关性与独立性的关系。
3、掌握(了解)二维均匀分布和,了解二维正态分布的概率密度,理解(了解)其中参数的概率意义。
4、会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。
会求两个独立随机变量和的分布。
四、随机变量的数字特征
随机变量的数学期望(均值)、方差、标准差及其性质
随机变量函数的数学期望
切比雪夫(Chebyshev)不等式
矩、协方差、相关系数及其性质。
1、理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数学特征的基本性质,并掌握常用分布的数字特征。
2、会求随机变量函数的数学期望。
3、了解切比雪夫不等式。
五、大数定律和中心极限定理
切比雪夫不等式
切比雪夫大数定律
伯努利(Bernoylli)大数定律
辛钦(Khinchine)大数定律 隶莫弗-拉普拉斯(DeMoivre-Laplace)定理
列维-林德伯格(Levy-Lindberg)定理。
1、了解切比雪夫不等式
2、了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)
3、了解隶莫弗-拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维-林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。
六、数理统计的基本概念
考试内容
总体
个体
简单随机样本
统计量
样本均值
样本方差和样本矩X2分布t分布F分布
分位数
正态总体的常用抽样分布
考试要求
1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:
2.了解X2分布t分布F分布的概念及性质,了解分位数的概念并会差表计算
3.了解正态总体的常用抽样分布。
3.5
导数在经济分析中的应用
一、边际概念
设经济函数
在x处可导,则称导数
的边际函数。
为边际函数值。
其经济意义是:
当
个单位。
二、边际成本
设总成本函数CT=CT(Q),Q为产量,则生产Q个单位产品时的边际成本函数为:
。
该式可理解为当生产Q个单位产品前最后增加的那个单位产量所花费的成本,或者是生产Q个单位增加的那个单位产量所花费的成本。
三、边际收益
设总收益函数为RT=PQ,P为价格,Q为销售量,再设需求函数P=P(Q),则总收益函数为RT=QP(Q)
平均收益RA为
于是价格P(Q)可看作从需求量Q上获得的平均收益。
若设总收益函数的导数即边际收益为RM,则有
TheCongfearstothe鎴愬Zhu涘簲
该式表示销售Q个单位时,多销售一个单位产品或少销售—个单位产品使其增加或减少的收益。
四、函数的弹性
设函数
在x处可导,函数的相对改变量
The鐗╂祦鎶€?
?
与自变量的相对改变量
TheXian侀€?
LuGui?
两点间的弹性。
即
,
可见,弹性还可理解为边际函数与平均函数之比。
TheJuan氬姟Chan栧寘
TheLu墿Juan績设P为价格,D为需求量,需求函数D=D(p),那么需求价格弹性
Thestrand岀Huai鏉″warship鐮?
若商品的需求价格弹性
,则该商品的需求量对价格富有弹性。
The鐢熶HaiBi勬枡Ning傚満
称该商品具有单位弹性。
称该商品的需求量对价格缺乏弹性。
鍦Plankburnt鏉冩秷鐏?
TheChanч檰Jinヨ繍Cha?
需求弹性在经济上的意义是:
某商品的价格在p的基础上,价格每上升1%,社会对该商品的需求量将减少εDP%。
The鍏Fan闆嗚GengchangestheFuQi珯日常生活用品的需求价格弹性较小,而奢侈品的需求价格弹性则较大。
据国外统计,消费品中女帽的需求价格弹性最大。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 314 数学 农大 资料