认识负数Word格式.docx
- 文档编号:18866814
- 上传时间:2023-01-01
- 格式:DOCX
- 页数:52
- 大小:56.43KB
认识负数Word格式.docx
《认识负数Word格式.docx》由会员分享,可在线阅读,更多相关《认识负数Word格式.docx(52页珍藏版)》请在冰豆网上搜索。
介绍:
像“-6”这样的数叫负数(板书:
负数);
这个数读作:
负六。
“-”,在这里有了新的意义和作用,叫“负号”。
“+”是正号。
像“+6”是一个正数,读作:
正六。
我们可以在6的前面加上“+”,也可以省略不写(板书:
6)。
其实,过去我们认识的很多数都是正数。
(2)试一试。
请你用正、负数来表示出其它几组相反意义的量。
写完后,交流、检查。
3.联系实际,加深认识。
(1)说一说存折上的数各表示什么?
(教学例2。
(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。
①同桌交流。
②全班交流。
根据学生发言板书。
这样的正、负数能写完吗?
…
…)
强调指出:
像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;
在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。
4.进一步认识“0”。
(1)看一看、读一读。
接下来,我们一起来看屏幕:
这是去年12月份某天,部分城市的气温情况(课件出示)。
哈尔滨:
-15℃~-3℃
北京:
-5℃~5℃
深圳:
12℃~23℃
温度中有正数也有负数,请把负数读出来。
(2)找一找、说一说。
我们来看首都北京当天的温度,“-5℃”读作:
“负五摄氏度”或“负五度”,表示零下5度;
5℃又表示什么?
你能在温度计上找出这两个温度所在的刻度吗?
(课件出示温度计,没有刻度数)为什么?
现在你能很快找出来吗?
(给出温度计的刻度数,生到前面指。
说一说,你怎么这么快就找到了?
(课件配合演示:
先找0℃,在它的下面找-5℃,在它的上面找5℃。
你能很快找到12℃、-3℃吗?
(3)提升认识。
请学生观察温度计,说一说有什么发现?
在学生发言的基础上,强调:
以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。
(或负数都表示零下温度,正数都表示零上温度。
“0”是正数,还是负数呢?
在学生发言的基础上,强调:
“0”作为正数和负数的分界点,它既不是正数也不是负数。
(4)总结归纳。
如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:
(完善板书。
5.练一练。
读一读,填一填。
(练习一第1题。
6.出示课题。
同学们,想一想,今天你学习了什么新知识?
认识了哪位新朋友?
你能为今天的数学课定一个课题吗?
根据学生的回答总结本节课所学内容,并选择板书课题:
认识负数。
7.负数的历史。
(1)介绍。
其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):
“中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。
魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:
‘两算得失相反,要令正负以名之。
’古代用算筹表示数,这句话的意思是:
‘两种得失相反的数,分别叫做正数和负数。
’并且规定用红色算筹表示正数,黑色算筹表示负数。
由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。
国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。
但比中国晚了数百年!
”
(2)交流。
简单了解了负数的历史,你有什么感受?
三、练习应用
今天,负数在我们的生产和生活中依然有着广泛的用途。
让我们就一起走进生活,感受数与生活的密切联系。
课件逐一出示:
1.表示海拔高度。
(“做一做”第2题。
通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;
吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。
2.表示温度。
(练习一第2题。
月球表面白天的平均温度是零上126℃,记作_________℃,夜间的平均温度为零下150℃,记作_____________℃。
3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。
如果她要回家,按哪个按钮?
如果到储藏室取东西呢?
4.表示时间。
(练习一第3题。
5.“净含量:
10±
0.1kg”表示什么意思?
四、总结延伸
1.学生交流收获。
2.总结。
简要、具体地评价学生的收获,并强调:
关于负数,生活中还有更广泛的应用;
走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。
第二单元教学目标
1、通过本单元的教学,向学生渗透“理论来源于实践”的观点,进一步发展学生的空间思维。
2、使学生认识圆柱和圆锥,掌握它们的特点;
认识圆柱的底面、侧面和高;
认识圆锥的底面和高。
3、使学生理解求圆柱的侧面积、表面积的计算方法,并会计算。
4、使学生理解求圆柱、圆锥的体积的计算公式,会用公式计算体积、容积,解决有关实际问题。
5、上有余力的学生初步认识球,知道球的各部分的名称及半径与直径的关系
1、圆柱的认识
教科书第31—32页的内容,完成“做一做”和练习七的第1题。
教学目的:
使学生认识圆柱的特征,能看懂圆柱的平面图;
认识圆柱侧面的展开图。
教具准备:
教师准备长方体形和正方体形的物体各一个,及多个圆柱形的物体(如罐头盒、茶叶筒、药盒、药瓶、纸盒等);
让学生也收集几个圆柱形的盒子,同时让学生将教科书上的图沿边剪下来。
教学过程:
一、复习
1、已知圆的半径或直径,怎样计算圆的周长?
指名学生回答,使学生熟悉圆的周长公式:
C=2Π
r或C=
Π
D。
1、
求下列各圆的周长(口算)。
r=2厘米,
d=3分米
教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确。
二、导入新课
教师手中先后拿一个长方体形的物体和正方体形的物体,提问:
我手里拿的物体是什么形状的?
他们有什么特征?
由此引导学生复习长方体和正方体的一些特征。
教师出示几个圆柱形的物体,“大家注意了,你们看看这些物体跟长方体、正方体的形状一样吗?
学生:
不一样。
教师:
请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它们与长方体有什么不一样?
三、新课
1、圆柱的认识。
让学生拿着圆柱形的物体观察和摆弄后,指定几名学生说出自己观察的结果。
从而使学生认识到长方体、正方体都是由平面围成的立体图形;
而圆柱则有一个曲面,有两个面是圆,从上到下一样粗细,等等。
教师指出:
像这样的物体就叫做圆校体,简称圆柱。
这节课我们就来学习这种新的立体图形。
板书课题:
圆柱
教师:
大家刚才认识了圆柱形的物体,我们把这些物体画在投影片上。
出示有圆柱形物体的投影片。
现在我们沿着这些圆柱形物体的轮廓画线,于是就可以得到这样的图形。
随后教师抽拉投影片,演示得到圆柱形物体的轮廓线。
然后指出:
这样得到的图形就是圆柱体的几何图形。
请大家再观察一下,这些圆柱的上、下两个面有什么特点?
引导学生发现:
圆柱的上、下两个面都是平面,并且它们是完全相同的两个圆。
教师指出:
圆柱的上、下两个面叫做底面。
然后在图上标出底面以及两个圆的圆心O。
同时还要指出:
我们所学的圆柱是直圆柱的简称,即两个底面之间从上到下一样粗细,高垂直于底面。
接着让学生用手摸一摸圆柱周围的面,使学生发现圆柱有一个曲面,由此指出:
圆柱的这个曲面叫做侧面。
(在图上标出侧面。
让学生看圆柱形物体,指出:
圆柱的两个底面之间的距离叫做高。
然后在图上标出高。
提问:
圆柱的高有多少条?
他们之间有什么关系?
使学生明白:
圆柱的高有无数条,他们都相等。
然后让学生拿出自己的学具,同桌的两名同学相互指出圆柱的两个底面、侧面和高。
小结:
圆柱的特征(可以启发学生总结),强调底面和高的特点。
上、下两个面都是面积相等的圆
圆柱
从上到下粗细相同
2、巩固练习
(1)做“做一做”的第2、3题。
要求学生说出日常生活中哪些物体是圆柱形的,如钢管、汽油桶、炉子姻简、截面是圆形的铅笔等。
(2)出示一组立体图形,辨析哪些是圆柱,哪些不是圆柱?
为什么?
2、圆柱的表面积
教科书第33—34页的例l一例3,完成“做一做”和练习七的第2—5题。
使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。
并根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。
圆柱形的物体,圆柱侧面的展开图
教学过程;
1、指名学生说出圆柱的特征。
2长方形的面积公式?
学生回答后板书:
长方形的面积=长×
宽
上节课我们认识了圆柱和圆柱的侧面展开图。
请大家想一想,圆柱侧面的展开图是什么图形?
教师出示上节课实验用的罐头盒,引导学生回忆实验过程:
沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。
这个展开后的长方形与圆柱有什么关系?
这个长方形的长等于圆柱的周长,长方形的宽等于圆往的高。
那么,圆柱侧面积应该怎样计算呢?
今天我们就来学习有关圆柱的侧面积和表面积的计算。
1,圆柱的侧面积。
板书课题:
圆柱的侧面积。
圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。
教师边叙述边摸着圆柱的侧面演示给学生看,指出侧.面的大小就是圆柱的侧面积。
从上面的实验我们可以看出,这个展开后的长方形的面积和因拄的侧面积有什么关系呢?
教师出示圆柱的侧面展开图,让学生观察很容易看到这个长方形的面积等于圆柱的例面积。
那么,圆柱的侧面积应该怎样计算呢?
引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:
圆柱的侧面积=底面周长×
高
(板书上面等式:
2、教学例1:
一个圆柱、底面直径是0.5米,高是1.8米,求它的侧面积。
(得数保留两位小数)
让学生回答下面的问题:
(1)这道题已知什么,求什么?
(2)计算结果要注意什么?
指定一名学生板演,其他学生在练习本上做。
教师行间巡视,注意发现学生计算中的错误,并及时纠正。
做完后,集体订正。
3、小结。
要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径.底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式:
4、理解圆柱表面积的含义。
请大家把上节课自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?
通过操作,使学生认识到:
圆柱的表面由上、下两个底面和侧面组成。
教师指着圆柱的展开图,“那么,圆柱的表面积是什么?
指名学生回答,使大家明确:
圆柱的表面.积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。
板书:
圆柱的表面积=圆柱侧面积十两个底面的面积
教学例2。
一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?
教颊:
这道题已知什么?
求什么?
学生:
已知圆柱的高和底面半径,求表面积。
要求圆柱的表面积,应该先求什么?
·
后求什么?
要先求圆柱侧面积和底面积,后求表面积。
我们可以根据已知条件画出这个圆柱。
随后教师出示圆柱模型,将数据标在图上。
现在我们把这个圆柱展开。
出示展开图。
让学生观察展开图,“在这个图中,长方形的长等于多少?
宽等于多少:
圆柱的侧面积怎样计算?
圆柱的底面积应该怎样求?
指名学生回答,注意要使学生弄清每一步计算运用什么公式(如圆的周长公式和面积公式,长方形的面积公式,等等)。
然后指定一名学生在黑板上板演,其他学生在练习本上做。
教师行间巡视,注意察看学生计算结果的计量单位是否正确。
6、教学例3。
,一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?
(得数保留整百平方厘米。
己知圆柱形水桶的高是24厘米,底面直径是20厘米。
求做这个水桶要用多少铁皮。
这个水桶是没有盖的,说明了什么?
如果把做这个水桶的铁皮展开,会有哪几部分?
使学生明白:
水桶没有盖,说明它只有一个底面。
要计算做这个水桶需要多少铁皮,应该分哪几步?
指名学生回答后,指定两名学生板演,其他学生独立进行计算。
教师行间巡视,注意察看最后的得数是否计算正确。
做完后,集体订正。
指名学生回答自己在计算时,最后的得数是怎样取舍的。
由此指出:
这道题使用的材料要比计算得到的结果多一些。
因此,这里不能用四舍五人法取近似值。
这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。
这种取近似值的方法叫做进一法。
7、小结。
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。
如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。
四、巩固练习
1、做“做一做”的第1题。
应该怎样求侧面积?
使学生明白可以直接用底面周长乘以高就可以得到侧面积。
让学生做在练习本上,做完后集体订正。
2、做一做的第2题。
让学生独立做在练习本上,教师行间巡视,做完后集体订正。
五、作业
1、完成第练习七的第2~~5题。
(1)第2、3题,是分别求圆柱的例面积和表面积,要求学生正确选用公式,认真仔细地计算。
(2)第4题,圆柱形沼气池·
的形状和特点要向学生说明(特别是城市里的小学生),把它转化为数学问题,要弄清求的是圆柱哪些部分的面积。
(3)第5题,是先实际测量,再计算的题目,可以分组进行测量和计算,每组要量的茶叶筒的大小可以是不一样的。
2、让学有余力的学生做练习十的第6、7题。
第6·
题.是已知圆柱的侧面积和底面半径,求圆柱的高。
这样就要把求圆柱的侧面积的运算顺序颠倒过来。
教师可以提示学生列方程解答。
第7题,是求一个没有盖的圆柱形铁皮水桶的用料:
S=ΠR十2ΠH≈63.59十
339.12=402.71≈410(平方分米)
3、圆柱的体积
教科书第36页的圆柱体积公式的推导和例4,完成“做一做”的第1题和练习八的第1—2题。
通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。
圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。
1、圆柱的侧面积怎么求?
(圆柱的侧面积=底面周长×
高。
2、长方体的体积怎样计算?
学生可能会答出“长方体的体积=长×
宽×
高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积×
高”。
板书:
长方体的体积=底面积×
3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?
圆柱有几个底面?
有多少条高?
二、导入新课
请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的?
先让学生回忆,同桌的相互说说。
然后指名学生说一说圆面积计算公式的推导过程:
把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的
计算公式导出求圆面积的计算公式。
怎样计算圆柱的体积呢?
大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积?
让学生相互讨论,思考应怎样进行转化。
指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开,教师应该给予表扬。
这节课我们就来研究如何将圆柱转化成我们已经学过的图形来求出它的体积。
圆校的体积
三、新课
1、圆柱体积计算公式的推导。
教师出示一个圆柱,提问:
这是不是一个圆柱?
(是。
)
教师用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:
“大家看,这是不是一圆?
”(是。
“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?
学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引导学生观察:
沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。
教师将这分成16块的底面出示给学生看,问:
现在把底面切成了16份,应该怎样把它拼成一个长方形?
指名学生回答后,老师进行操作演示,先只把底面部分拿给学生看,。
大家看,圆柱的底面被拼成了什么图形?
长方形。
大家再看看整个圆柱,它又被拼成了什么形状?
(有点接近长方体:
然后教师指出:
由于我们分得不够细,所以看起来还不太像长方体;
如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
把圆柱拼成近似的长方体后,体积发生变化没有?
圆柱的体积可以怎样求?
引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。
“而长方体的体积等于什么?
”让全斑学生齐答,教师接着板书:
“长方体的体积=底面积×
请大家观察教具,拼成的近似长方体的底面积与原来圆柱的哪一部分有关系?
近似长方体的高与原来圆柱的哪一部分有关系?
通过观察,使学生明确:
长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
圆柱的体积=底面积×
如果用V表示圆柱的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式;
V=SH
2、教学例4。
一根圆柱形钢材,底面积是50平方厘米,高是2.1米。
它的体积是多少?
(1)教师指名学生分别回答下面的问题:
①这道题已知什么?
②能不能根据公式直接计算?
③计算之前要注意什么?
通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。
(2)出示下面几种解答方案,让学生判断哪个是正确的?
①V=SH=50×
2.1=105
答:
它的体积是105立方厘米。
②2.1米;
210厘米
V=SH=50×
210=10500
它的体积是10500立方厘米。
③50平方厘米=0,5平方米
V=SH=0.5×
2,1=1.05
它的体积是1.05立方米。
④50平方厘米=0.005平方米
V=SH=0.005×
2.1=0.0105立方米
它的体积是0.0105立方米。
先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。
对不正确的第①、②种解答要说说错在什么地方。
三、练习:
1、做“做一做”的第1题。
让学生独立做在练习本上,做完后集体订正。
2、完成练习八的1、2题
这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。
要求学生审题
后,知道底面直径的要先求出底面积,再求圆柱的体积。
4、圆柱体积计算的应用
教科书第37页的例5,完成“做一做”的第2题和练习八的第3—7题。
使学生掌握圆柱体积的计算公式,并能运用公式解决一些简单的实际问题。
一个圆柱形物体,一个圆柱形杯子。
一、复习
1、口算。
出示练习八的第3题
4.5十0.37
0.25×
8
4.8十2.9
7.2÷
9
6.1—4.8
2,复习圆柱的体积。
我们是怎样得到圆柱体积的计算公式的?
圆柱体积的计算公式是什么?
指名学生叙述一下圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。
圆柱体积的计算公式是“底面积×
高”,即:
V=SH.
二、新课
1、教学圆柱体积公式的另一种形式。
请大家想一想,如果已知圆柱底面的半径r和高H,圆柱体积的计算公式
应该怎样表达?
引导学生根据底面积S与半径r的关系可以知道:
S=∏×
R×
R,所以圆柱体积的计算公式也可以写成:
V=∏×
R×
H。
2、教学例5。
一个圆柱形水桶,从里面量底面直径是20厘米,高是25厘米。
这个水捅的容积是多少立方分米?
(得数保留一位小数)
(1)教师提出下面问题帮助学生理解题意:
①这道题已知什么?
②求水桶的容积是什么
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 认识 负数