外文翻译多模态六自由度力视觉传感器融合的姿态跟踪Word格式文档下载.docx
- 文档编号:18798659
- 上传时间:2023-01-01
- 格式:DOCX
- 页数:12
- 大小:1.14MB
外文翻译多模态六自由度力视觉传感器融合的姿态跟踪Word格式文档下载.docx
《外文翻译多模态六自由度力视觉传感器融合的姿态跟踪Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《外文翻译多模态六自由度力视觉传感器融合的姿态跟踪Word格式文档下载.docx(12页珍藏版)》请在冰豆网上搜索。
外文翻译多模态六自由度力视觉传感器融合的姿态跟踪@#@附录A@#@Multi-modalForce/VisionSensorFusionin6-DOFPoseTracking@#@Abstract—Sensorbasedrobotcontrolallowsmanipulationindynamicanduncertainenvironments.Visioncanbeusedtoestimate6-DOFposeofanobjectbymodel-basedposeestimationmethods,buttheestimateisnotaccurateinalldegreesoffreedom.Forceoffersacomplementarysensormodalityallowingaccuratemeasurementsoflocalobjectshapewhenthetooltipisincontactwiththeobject.Asforceandvisionarefundamentallydifferentsensormodalities,theycannotbefuseddirectly.Wepresentamethodwhichfusesforceandvisualmeasurementsusingpositionalinformationoftheend-effector.Bytransformingthepositionofthetooltipandthecameratoasamecoordinateframeandmodelingtheuncertaintiesofthevisualmeasurement,thesensorscanbefusedtogetherinanExtendedKalmanfilter.Experimentalresultsshowgreatlyimprovedposeestimateswhenthesensorfusionisused.@#@I.INTRODUCTION@#@Robotcontrolinunstructuredenvironmentsisachallengingproblem.Simplepositionbasedcontrolisnotadequate,ifthepositionoftheworkpieceisunknownduringmanipulationasuncertaintiespresentinrobottaskpreventtherobotfromfollowingapreprogrammedtrajectory.Sensorbasedmanipulationallowsarobottoadapttoadynamicanduncertainenvironment.Withsensorstheuncertaintiesoftheenvironmentcanbemodeledandtherobotcantakeactionsbasedonthesensoryinput.Invisualservoingtherobotiscontrolledbasedonthesensoryinputfromavisualsensor.A3-Dmodeloftheworkpiececanbecreatedand6-DOFposeoftheobjectcanbedeterminedbyposeestimationalgorithms.Visualservoingenablessuchtasksastrackingamovingobjectwithanend-effectormountedcamera.However,asinglecameravisualmeasurementisoftennotaccurateinalldegreesoffreedom.Onlytheobjecttranslationsperpendiculartothecameraaxiscanbedeterminedaccurately.Objecttranslationalongthecameraaxisisdifficulttomeasureasevenalargechangeinobjectdistanceinducesonlyasmallchangeinimage.Thesameappliesfortherotationsasonlytherotationaroundthecameraaxiscanbedeterminedaccuratelywhereasrotationsaroundtheoffaxesyieldonlyadiminishingchangeinimage.Visioncanbecomplementedbyothersensormodalitiesinordertoalleviatetheseproblems.Withatactileorforcesensorthelocalshapeoftheobjectcanbeprobed.Whenthetooltipisincontactwithanobjectandthepositionofthetooltipisknown,informationabouttheobjectcanbeextracted.However,asingletooltipmeasurementcanonlygiveonepointontheobjectsurface.Withoutotherinformationthismeasurementwouldbeuselessaswedonotknowonwhichlocationoftheobjectthemeasurementistaken.Alsoiftheobjectismovingthepointofcontactcanmoveevenifthepositionofthetooltipisstationary.Combiningaforcesensorwithvisionwouldseemappealingasthesetwosensorscancomplementeachother.Sincetheforceandvisionmeasureafundamentallydifferentsensormodalitytheinformationfromthesesensorscannotbefuseddirectly.Visioncangivethefullposeofanobjectwithrespecttothecamera,butforcesensorcanmeasureforcesonlylocally.Whentheforcesensorisusedonlytodetectifthetooltipisincontactwiththeobject,nootherinformationcanbegained.Combiningthisbinaryinformationwithvisualmeasurementrequiresthatboththepositionofthetooltipandthecameraareknowninthesamecoordinateframe.Thiscanbeachievedastheincrementalencodersorjointanglesensorsoftherobotcandeterminethepositionoftherobotend-effectorinworldcoordinates.Ifalsothehand-eyecalibrationofthecameraandthetoolgeometriesareknown,bothofthemeasurementscanbetransformedintoworldcoordinateframe.Asingletooltipmeasurementcanonlygiveconstraintstotheposeoftheobjectbutnotthefullpose.Thereforeasinglemeasurementismeaninglessunlessitcanbefusedwithothersensormodalitiesorovertime.Combiningseveralsensormodalitiesormultiplemeasurementsovertimecanreducetheuncertaintyofthemeasurements,butinordertofusethemeasurementstheuncertaintyofeachindividualmeasurementmustbeestimated.Alsothesensordelayofthevisualmeasurementsmustbetakenintoaccountwhenfusingthemeasurements.Especially,eye-inhandconfigurationrequiresaccuratesynchronizationofthepositionalinformationandvisualmeasurement.Otherwisevisionwillgiveerroneousinformationwhiletheend-effectorisinmotion.@#@Inthispaper,wepresenthowvisionandforcecanbefusedtogethertakingintoaccounttheuncertaintyofeachindividualmeasurement.Amodelbasedposeestimationalgorithmisusedtoextracttheunknownposeofamovingtarget.TheuncertaintyoftheposedependsontheuncertaintyofthemeasuredfeaturepointsinimageplaneandthisuncertaintyisprojectedintoCartesianspace.Atooltipmeasurementisusedtoprobethelocalshapeoftheobjectbymovingontheobjectsurfaceandkeepingaconstantcontactforce.AnExtendedKalmanfilter(EKF)isthenusedtofusethemeasurementsovertimebytakingintoaccounttheuncertaintyofeachindividualmeasurement.Toourknowledgethisisthefirstworkusingcontactinformationtocompensatetheuncertaintyofvisualtrackingwhilethetooltipisslidingontheobjectsurface.@#@II.RELATEDWORK@#@ReductionofmeasurementerrorsandfusionofseveralsensorymodalitiesusingaKalmanfilter(KF)frameworkiswidelyusedinrobotics,forexample,in6-DOFposetracking[1].However,invisualservoingcontextKalmanfiltersaretypicallyusedonlyforfilteringuncertainvisualmeasurementsanddonottakeintoaccountthepositionalinformationoftheend-effector.Wilsonetal.[2]proposedtosolvetheposeestimationproblemforposition-basedvisualservoingusingtheKFframeworkasthiswillbalancetheeffectofmeasurementuncertainties.Lippielloetal.proposeamethodforcombiningvisualinformationfromseveralcamerasandtheposeoftheendeffectortogetherinKF[3].However,intheirapproachestheKFcanbeunderstoodasasingleiterationofaniterativeGauss-Newtonprocedureforposeestimation,andassuchisnotlikelytogiveoptimalresultsforthenon-linearposeestimationproblem.@#@Controlandobservationaredualproblems.Combiningofforceandvisionisoftendoneonthelevelofcontrol[4],[5],[6].Asthereisnocommonrepresentationforthetwosensormodalitiescombiningtheinformationinoneobservationmodelisnotstraightforward.Previousworkoncombininghapticinformationwithvisioninobservationlevelprimarilyusesthetwosensorsseparately.Visionisusedtogeneratea3Dmodelofanobjectandaforcesensortoextractphysicalpropertiessuchasstiffnessoftheobject[7].Pomaresetal.combinedaforcesensorandaneye-in-handcamerausingstructuredlighttodetectchangesinthecontactsurface[8].Visionisfirstusedtodetectzoneslikelytohavediscontinuitiesonthesurfaceandtheforcesensorisusedforverifyingthediscontinuity.@#@Ourworkcombinescontactinformationwithvisiontoextractmoreaccurateinformationoftheobjectpose.Weassumeaconstantstiffnessfortheobjectmakingitpossibletousethetooltipmeasurementsfordeterminingtheobjectpositionandorientation.Themethodisindependentofthefrictionandcanbeusedevenwhenthetooltipisslidingontheobjectsurfacewhiletheobjectisinmotion.@#@In[9]arobotwasusedtoprobetheposeofanobjectaswellascontactparameters.However,theproposedapproachusedvisiononlytoestimatetheposeofthetoolandnottheposeoftheobject.Ourapproachusesvisiontoestimatetheposeoftheobject,andthepositionofthetooltipaswellastheposeofthecameraareobtainedfromthejointsensorsofaparallelmanipulator.Analgorithmpresentedin[10]combinesvisionwithforceandjointanglesensors.Acamerafixedtotheworldframeaswellaswristforcesensorandjointsensorsofan6-DOFindustrialrobotarefusedinanEKF.Whiletheirapproachtakesadvantageoftheforcesensormeasurementsdirectlyintheposeestimateaswellasthepositionalinformationfromthejointsensors,theyassumefrictionlesspointcontactmakingitimpossibletousethesensorfusionwhilethetooltipismovingonaphysicalsurface.@#@III.MODELBASEDPOSEESTIMATION@#@Theposeofanobjectrelativetoacameraisobtainablewithmodelbasedposeestimationmethods.Weusedmarkerbasedtrackingwithapredefined3-Dmarkermodel.Themarkersystemwasdesignedsothatperspectiveprojectiondoesnotcauseinaccuraciesindeterminingthemarkerlocation.Inourapproachthemarkerfeaturesarepointsanddonotsufferfromperspectiveprojection.Eachmarkerconsistofthreecornerswhichcanberecognizedwithcornerextractionmethods[11].ThemarkersystemandcoordinateaxesoftheestimatedrelativeposeareshowninFig.1.@#@Withmodelbasedpose-estimationtheposeoftheobjectrelativetothecameraCTOcanbedeterminediftheintrinsiccameraparametersareknown.Poseestimationmethodsrequireatleastthree2-D–3-Dfeaturepairsthatarenotonthesameline.AninitialguessfortheposewascalculatedusingDeMenthon’smodel-basedposeestimationmethod[12].However,thisapproachdoesnotconvergetoalocaloptimumoftheposeandthereforealocalgradientdescentapproachwasusedtofinetunethepose.@#@Inoursetupthecameraisattachedrigidlytotheendeffector,butitisnotinthecenteroftheend-effector.TransformationfromthecameratotheobjectCTOismea-suredwithvision.Thetranslationandrotationofthecamerarespecttotheendeffec-torEETCmustbe
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 外文 翻译 多模态六 自由度 视觉 传感器 融合 姿态 跟踪