人教版九年级数学上个单元知识点总结.docx
- 文档编号:1840754
- 上传时间:2022-10-24
- 格式:DOCX
- 页数:18
- 大小:189.19KB
人教版九年级数学上个单元知识点总结.docx
《人教版九年级数学上个单元知识点总结.docx》由会员分享,可在线阅读,更多相关《人教版九年级数学上个单元知识点总结.docx(18页珍藏版)》请在冰豆网上搜索。
人教版九年级数学上个单元知识点总结
人教版九年级数学上个单元知识点总结
一、一元二次方程
1、一元二次方程
含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
2、一元二次方程的一般形式,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
二、降次----解一元二次方程
1.降次:
把一元二次方程化成两个一元一次方程的过程(不管用什么方法解一元二次方程,都是要一元二次方程降次)
2、直接开平方法
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如x2=b或的一元二次方程。
根据平方根的定义可知,是b的平方根,当时,,,当b<0时,方程没有实数根。
3、配方法:
配方法的理论根据是完全平方公式,把公式中的a看做未知数x,并用x代替,则有。
配方法解一元二次方程的步骤是:
①移项、②配方(写成平方形式)、③用直接开方法降次、④解两个一元一次方程、⑤判断2个根是不是实数根。
4、公式法:
公式法是用求根公式,解一元二次方程的解的方法。
一元二次方程的求根公式:
当>0时,方程有两个实数根。
当=0时,方程有两个相等实数根。
当<0时,方程没有实数根。
5、因式分解法:
先将一元二次方程因式分解,化成两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解叫因式分解法。
这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式
根的判别式:
一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即
四、一元二次方程根与系数的关系
如果方程的两个实数根是,由求根公式
可算出,。
第二十二章二次函数
一、二次函数概念:
1.二次函数的概念:
一般地,形如(是常数,)的函数,叫做二次函数。
这里需要强调:
和一元二次方程类似,二次项系数,而可以为零.二次函数的定义域是全体实数.
2.二次函数的结构特征:
⑴等号左边是函数,右边是关于自变量的二次式,的最高次数是2.
⑵是常数,是二次项系数,是一次项系数,是常数项.
二、二次函数的基本形式
1.二次函数基本形式:
的性质:
a的绝对值越大,抛物线的开口越小。
的符号
开口方向
顶点坐标
对称轴
性质
向上
轴
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
轴
时,随的增大而减小;时,随的增大而增大;时,有最大值.
2.的性质:
上加下减。
的符号
开口方向
顶点坐标
对称轴
性质
向上
轴
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
轴
时,随的增大而减小;时,随的增大而增大;时,有最大值.
3.的性质:
左加右减。
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
X=h
时,随的增大而减小;时,随的增大而增大;时,有最大值.
4.的性质:
的符号
开口方向
顶点坐标
对称轴
性质
向上
X=h
时,随的增大而增大;时,随的增大而减小;时,有最小值.
向下
X=h
时,随的增大而减小;时,随的增大而增大;时,有最大值.
三、二次函数图象的平移
1.平移步骤:
方法一:
⑴将抛物线解析式转化成顶点式,确定其顶点坐标;
⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:
2.平移规律
在原有函数的基础上“值正右移,负左移;值正上移,负下移”.
概括成八个字“左加右减,上加下减”.
方法二:
⑴沿轴平移:
向上(下)平移个单位,变成
(或)
⑵沿轴平移:
向左(右)平移个单位,变成(或)
四、二次函数与的比较
从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.
五、二次函数图象的画法
五点绘图法:
利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:
顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,(若与轴没有交点,则取两组关于对称轴对称的点).
画草图时应抓住以下几点:
开口方向,对称轴,顶点,与轴的交点,与轴的交点.
六、二次函数的性质
1.当时,抛物线开口向上,对称轴为,顶点坐标为.
当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.
2.当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.
七、二次函数解析式的表示方法
1.一般式:
(,,为常数,);
2.顶点式:
(,,为常数,);
3.两根式:
(,,是抛物线与轴两交点的横坐标).
注意:
任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.
八、二次函数的图象与各项系数之间的关系
1.二次项系数
二次函数中,作为二次项系数,显然.
⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;
⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.
总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.
2.一次项系数
在二次项系数确定的前提下,决定了抛物线的对称轴.
⑴在的前提下,
当时,,即抛物线的对称轴在轴左侧;
当时,,即抛物线的对称轴就是轴;
当时,,即抛物线对称轴在轴的右侧.
⑵在的前提下,结论刚好与上述相反,即
当时,,即抛物线的对称轴在轴右侧;
当时,,即抛物线的对称轴就是轴;
当时,,即抛物线对称轴在轴的左侧.
总结起来,在确定的前提下,决定了抛物线对称轴的位置.
的符号的判定:
对称轴在轴左边则,在轴的右侧则,概括的说就是“左同右异”
总结:
3.常数项
⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;
⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;
⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.
总结起来,决定了抛物线与轴交点的位置.
总之,只要都确定,那么这条抛物线就是唯一确定的.
九、二次函数解析式的确定:
根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:
1.已知抛物线上三点的坐标,一般选用一般式;
2.已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
3.已知抛物线与轴的两个交点的横坐标,一般选用两根式;
4.已知抛物线上纵坐标相同的两点,常选用顶点式.
十、二次函数图象的对称
二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达
1.关于轴对称
关于轴对称后,得到的解析式是;
关于轴对称后,得到的解析式是;
2.关于轴对称
关于轴对称后,得到的解析式是;
关于轴对称后,得到的解析式是;
3.关于原点对称
关于原点对称后,得到的解析式是;
关于原点对称后,得到的解析式是;
4.关于顶点对称(即:
抛物线绕顶点旋转180°)
关于顶点对称后,得到的解析式是;
关于顶点对称后,得到的解析式是.
5.关于点对称
关于点对称后,得到的解析式是
根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.
十一、二次函数与一元二次方程:
1.二次函数与一元二次方程的关系(二次函数与轴交点情况):
一元二次方程是二次函数当函数值时的特殊情况.
图象与轴的交点个数:
①当时,图象与轴交于两点,其中的是一元二次方程的两根.这两点间的距离.
②当时,图象与轴只有一个交点;
③当时,图象与轴没有交点.
当时,图象落在轴的上方,无论为任何实数,都有;
当时,图象落在轴的下方,无论为任何实数,都有.
2.抛物线的图象与轴一定相交,交点坐标为,;
3.二次函数常用解题方法总结:
⑴求二次函数的图象与轴的交点坐标,需转化为一元二次方程;
⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;
⑶根据图象的位置判断二次函数中,,的符号,或由二次函数中,,的符号判断图象的位置,要数形结合;
抛物线与轴有两个交点
二次三项式的值可正、可零、可负
一元二次方程有两个不相等实根
抛物线与轴只有一个交点
二次三项式的值为非负
一元二次方程有两个相等的实数根
抛物线与轴无交点
二次三项式的值恒为正
一元二次方程无实数根.
⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与轴的一个交点坐标,可由对称性求出另一个交点坐标.
⑸与二次函数有关的还有二次三项式,二次三项式本身就是所含字母的二次函数;下面以时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:
十二、二次函数图像参考:
十三、函数的应用
二次函数应用
第二十三章旋转
一、旋转
1、定义:
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
⑶旋转前后的图形全等。
二、中心对称
1、定义:
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定:
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形:
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
5、关于原点对称的点的特征:
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
6、关于x轴对称的点的特征:
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)。
7、关于y轴对称的点的特征:
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)。
第二十四章圆
一、圆的相关概念
1、圆的定义:
在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示:
以点O为圆心的圆记作“⊙O
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 上个 单元 知识点 总结