回归分析练习题及参考答案Word下载.docx
- 文档编号:18148252
- 上传时间:2022-12-13
- 格式:DOCX
- 页数:19
- 大小:58.60KB
回归分析练习题及参考答案Word下载.docx
《回归分析练习题及参考答案Word下载.docx》由会员分享,可在线阅读,更多相关《回归分析练习题及参考答案Word下载.docx(19页珍藏版)》请在冰豆网上搜索。
(2)相关系数:
系数a
模型
非标准化系数
标准系数
t
Sig.
相关性
B
标准误差
试用版
零阶
偏
部分
1
(常量)
.003
人均GDP
.309
.008
.998
.000
a.因变量:
人均消费水平
有很强的线性关系。
(3)回归方程:
回归系数的含义:
人均GDP没增加1元,人均消费增加元。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
注意:
图标不要原封不动的完全复制软件中的图标,要按规范排版。
系数(a)
标准化系数
显着性
标准误
Beta
人均GDP(元)
人均消费水平(元)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(4)
模型汇总
R
R方
调整R方
标准估计的误差
.998a
.996
a.预测变量:
(常量),人均GDP。
人均GDP对人均消费的影响达到%。
模型摘要
调整的R方
估计的标准差
.998(a)
(常量),人均GDP(元)。
(5)F检验:
Anovab
平方和
df
均方
F
回归
.680
.000a
残差
5
总计
.714
6
b.因变量:
回归系数的检验:
t检验
(6)
某地区的人均GDP为5000元,预测其人均消费水平为
(元)。
(7)
人均GDP为5000元时,人均消费水平95%的置信区间为[,],预测区间为[,]。
2从n=20的样本中得到的有关回归结果是:
SSR(回归平方和)=60,SSE(误差平方和)=40。
要检验x与y之间的线性关系是否显着,即检验假设:
。
(1)线性关系检验的统计量F值是多少
(2)给定显着性水平
,
是多少
(3)是拒绝原假设还是不拒绝原假设
(4)假定x与y之间是负相关,计算相关系数r。
(5)检验x与y之间的线性关系是否显着
(1)SSR的自由度为k=1;
SSE的自由度为n-k-1=18;
因此:
F=
=
=27
(2)
(3)拒绝原假设,线性关系显着。
(4)r=
=,由于是负相关,因此r=
(5)从F检验看线性关系显着。
3随机抽取7家超市,得到其广告费支出和销售额数据如下:
超市
广告费支出/万元
销售额/万元
A
B
C
D
E
F
G
l
2
4
6
10
14
20
19
32
44
40
52
53
54
(1)用广告费支出作自变量x,销售额作因变量y,求出估计的回归方程。
(2)检验广告费支出与销售额之间的线性关系是否显着(
(3)绘制关于x的残差图,你觉得关于误差项
的假定被满足了吗
(4)你是选用这个模型,还是另寻找一个更好的模型
广告费支出(万元)
销售额(万元)
(2)回归直线的F检验:
ANOVA(b)
.021(a)
合计
1,
(常量),广告费支出(万元)。
显着。
回归系数的t检验:
(3)未标准化残差图:
__
标准化残差图:
学生氏标准化残差图:
看到残差不全相等。
(4)应考虑其他模型。
可考虑对数曲线模型:
y=b0+b1ln(x)=+(x)。
4根据下面SPSS输出的回归结果,说明模型中涉及多少个自变量多少个观察值写出回归方程,并根据F,se,R2及调整的
的值对模型进行讨论。
模型汇总b
3
11
453670
14
VAR00002
VAR00003
VAR00004
自变量3个,观察值15个。
回归方程:
=+拟合优度:
判定系数R2=,调整的
=,说明三个自变量对因变量的影响的比例占到63%。
估计的标准误差
=,说明随即变动程度为
回归方程的检验:
F检验的P=,在显着性为5%的情况下,整个回归方程线性关系显着。
的t检验的P=,在显着性为5%的情况下,y与X1线性关系显着。
的t检验的P=,在显着性为5%的情况下,y与X2线性关系不显着。
的t检验的P=,在显着性为5%的情况下,y与X3线性关系显着。
因此,可以考虑采用逐步回归去除X2,从新构建线性回归模型。
5下面是随机抽取的15家大型商场销售的同类产品的有关数据(单位:
元)。
企业编号
销售价格y
购进价格x1
销售费用x2
3
5
7
8
9
11
12
13
15
l238
l266
l200
1193
1106
1303
1313
1144
1286
l084
l120
1156
1083
1263
1246
966
894
440
664
791
852
804
905
77l
511
505
85l
659
490
696
223
257
387
310
339
283
302
214
304
326
235
276
390
316
(1)计算y与x1、y与x2之间的相关系数,是否有证据表明销售价格与购进价格、销售价格与销售费用之间存在线性关系
(2)根据上述结果,你认为用购进价格和销售费用来预测销售价格是否有用
(3)求回归方程,并检验模型的线性关系是否显着(
(4)解释判定系数R2,所得结论与问题
(2)中是否一致
(5)计算x1与x2之间的相关系数,所得结果意味着什么
(6)模型中是否存在多重共线性你对模型有何建议
(1)y与x1的相关系数=,y与x2之间的相关系数=。
对相关性进行检验:
销售价格
购进价格
销售费用
Pearson相关性
显着性(双侧)
N
15
(**)
**.在.01水平(双侧)上显着相关。
可以看到,两个相关系数的P值都比较的,总体上线性关系也不现状,因此没有明显的线性相关关系。
(2)意义不大。
(3)
回归统计
MultipleR
RSquare
AdjustedRSquare
标准误差
观测值
方差分析
SS
MS
SignificanceF
回归分析
2
12
Coefficients
tStat
P-value
Lower95%
Upper95%
下限%
上限%
购进价格x1
0.
销售费用x2
从检验结果看,整个方程在5%下,不显着;
而回归系数在5%下,均显着,说明回归方程没有多大意义,并且自变量间存在线性相关关系。
(4)从R2看,调整后的R2=%,说明自变量对因变量影响不大,反映情况基本一致。
(5)方程不显着,而回归系数显着,说明可能存在多重共线性。
(6)存在多重共线性,模型不适宜采用线性模型。
6一家电器销售公司的管理人员认为,每月的销售额是广告费用的函数,并想通过广告费用对月销售额作出估计。
下面是近8个月的销售额与广告费用数据:
月销售收入y/万元
电视广告费用x1/万元
报纸广告费用x2/万元
96
90
95
92
94
(1)用电视广告费用作自变量,月销售额作因变量,建立估计的回归方程。
(2)用电视广告费用和报纸广告费用作自变量,月销售额作因变量,建立估计的回归方程。
(3)上述
(1)和
(2)所建立的估计方程,电视广告费用的系数是否相同对其回归系数分别进行解释。
(4)根据问题
(2)所建立的估计方程,在销售收入的总变差中,被估计的回归方程所解释的比例是多少
(5)根据问题
(2)所建立的估计方程,检验回归系数是否显着(
(1)回归方程为:
(2)回归方程为:
(3)不相同,
(1)中表明电视广告费用增加1万元,月销售额增加万元;
(2)中表明,在报纸广告费用不变的情况下,电视广告费用增加1万元,月销售额增加万元。
(4)判定系数R2=,调整的
=,比例为%。
(5)回归系数的显着性检验:
Intercept
电视广告费用工:
x1(万元)
报纸广告费用x2(万元)
假设:
H0:
=0H1:
≠0
t=
=,
>
,认为y与x1线性关系显着。
(3)回归系数的显着性检验:
,认为y与x2线性关系显着。
7某农场通过试验取得早稻收获量与春季降雨量和春季温度的数据如下:
收获量y(kg/hm2)
降雨量x1(mm)
温度x2(℃)
2250
3450
4500
6750
7200
7500
8250
25
33
45
105
110
115
120
8
16
17
(1)试确定早稻收获量对春季降雨量和春季温度的二元线性回归方程。
(2)解释回归系数的实际意义。
(3)根据你的判断,模型中是否存在多重共线性
(2)在温度不变的情况下,降雨量每增加1mm,收获量增加/hm2,在降雨量不变的情况下,降雨量每增加1度,收获量增加/hm2。
与
的相关系数
=,存在多重共线性。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 回归 分析 练习题 参考答案