全国各地中考数学真题分类解析汇编14 统计Word格式.docx
- 文档编号:17973578
- 上传时间:2022-12-12
- 格式:DOCX
- 页数:75
- 大小:917.34KB
全国各地中考数学真题分类解析汇编14 统计Word格式.docx
《全国各地中考数学真题分类解析汇编14 统计Word格式.docx》由会员分享,可在线阅读,更多相关《全国各地中考数学真题分类解析汇编14 统计Word格式.docx(75页珍藏版)》请在冰豆网上搜索。
216
B.
252
C.
288
D.
324
条形统计图;
用样本估计总体.
用分组合作学习所占的百分比乘以该校八年级的总人数,即可得出答案.
解:
根据题意得:
360×
=252(人),
答:
该校八年级支持“分组合作学习”方式的学生约为252人;
此题考查了条形统计图和用样本估计总体,关键是根据题意求出抽查人数中分组合作学习所占的百分比.
3.(2014年云南省,第8题3分)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:
成绩(分)9.409.509.609.709.809.90
人数235431
则入围同学决赛成绩的中位数和众数分别是( )
A.9.70,9.60B.9.60,9.60C.9.60,9.70D.9.65,9.60
众数;
中位数
根据中位数和众数的概念求解.
∵共有18名同学,
则中位数为第9名和第10名同学成绩的平均分,即中位数为:
=9.60,
众数为:
9.60.
本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;
如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
4.(2014•温州,第2题4分)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )
5﹣10元
10﹣15元
15﹣20元
20﹣25元
频数(率)分布直方图.
根据图形所给出的数据直接找出捐款人数最多的一组即可.
根据图形所给出的数据可得:
15﹣20元的有20人,人数最多,
则捐款人数最多的一组是15﹣20元;
故选C.
本题考查读频数分布直方图的能力和利用统计图获取信息的能力;
利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
5.(2014•温州,第6题4分)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是( )
星期
一
二
三
四
五
六
日
最高气温(℃)
22
24
23
25
21
22℃
23℃
24℃
25℃
中位数.
将数据从小到大排列,根据中位数的定义求解即可.
将数据从小到大排列为:
21,22,22,23,24,24,25,
中位数是23.
本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
6.(2014•舟山,第2题3分)一名射击爱好者5次射击的中靶环数如下:
6,7,9,8,9,这5个数据的中位数是( )
6
7
8
9
根据中位数的概念求解.
这组数据按照从小到大的顺序排列为:
6,7,8,9,9,
则中位数为:
8.
本题考查了中位数的知识:
7.(2014•舟山,第4题3分)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出( )
各项消费金额占消费总金额的百分比
各项消费的金额
消费的总金额
各项消费金额的增减变化情况
扇形统计图.
利用扇形统计图的特点结合各选项利用排除法确定答案即可.
A、能够看出各项消费占总消费额的百分比,故选项正确;
B、不能确定各项的消费金额,故选项错误;
C、不能看出消费的总金额,故选项错误;
D、不能看出增减情况,故选项错误.
故选A.
本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.
8.(2014•毕节地区,第5题3分)下列叙述正确的是()
方差越大,说明数据就越稳定
在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变
不在同一直线上的三点确定一个圆
两边及其一边的对角对应相等的两个三角形全等
方差;
不等式的性质;
全等三角形的判定;
确定圆的条件
利用方差的意义、不等号的性质、全等三角形的判定及确定圆的条件对每个选项逐一判断后即可确定正确的选项.
A、方差越大,越不稳定,故选项错误;
B、在不等式的两边同时乘以或除以一个负数,不等号方向改变,故选项错误;
C、正确;
D、两边及其夹角对应相等的两个三角形全等,故选项错误.
本题考查了方差的意义、不等号的性质、全等三角形的判定及确定圆的条件,属于基本定理的应用,较为简单.
9.(2014•毕节地区,第7题3分)我市5月的某一周每天的最高气温(单位:
℃)统计如下:
19,20,24,22,24,26,27,则这组数据的中位数与众数分别是()
23,24
24,22
24,24
22,24
众数;
根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数,即可得出答案.
24出现了2次,出现的次数最多,
则众数是24;
把这组数据从小到大排列19,20,22,24,24,26,27,最中间的数是24,
则中位数是24;
此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
10.(2014•武汉,第4题3分)在一次中学生田径运动会上,参加跳高的15名运动员的成绩如表:
成绩(m)
1.50
1.60
1.65
1.70
1.75
1.80
人数
1
2
4
3
那么这些运动员跳高成绩的众数是()
众数
根据众数的定义找出出现次数最多的数即可.
∵1.65出现了4次,出现的次数最多,
∴这些运动员跳高成绩的众数是1.65;
故选D.
此题考查了众数,用到的知识点是众数的定义,众数是一组数据中出现次数最多的数.
11.(2014•襄阳,第6题3分)五箱梨的质量(单位:
kg)分别为:
18,20,21,18,19,则这五箱梨质量的中位数和众数分别为( )
20和18
20和19
18和18
19和18
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;
众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
从小到大排列此数据为:
18、18、19、20、21,数据18出现了三次最多,所以18为众数;
19处在第5位是中位数.所以本题这组数据的中位数是19,众数是18.
本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
12.(2014•邵阳,第4题3分)如图是小芹6月1日﹣7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()
1小时
1.5小时
2小时
3小时
算术平均数;
折线统计图
根据算术平均数的概念求解即可.
由图可得,这7天每天的学习时间为:
2,1,1,1,1,1.5,3,
则平均数为:
=1.5.
本题考查了算术平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
13.(2014•孝感,第7题3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:
居民(户)
月用电量(度/户)
40
50
55
60
那么关于这10户居民月用电量(单位:
度),下列说法错误的是( )
中位数是55
众数是60
方差是29
平均数是54
加权平均数;
中位数;
众数.
根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.
A、月用电量的中位数是55度,正确;
B、用电量的众数是60度,正确;
C、用电量的方差是24.9度,错误;
D、用电量的平均数是54度,正确.
考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.
14.(2014•四川自贡,第7题4分)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为( )
5
3.
算术平均数
根据平均数的计算公式先求出a的值,再根据方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],代数计算即可.
∵6、4、a、3、2的平均数是5,
∴(6+4+a+3+2)÷
5=5,
解得:
a=10,
则这组数据的方差S2=[(6﹣5)2+(4﹣5)2+(10﹣5)2+(3﹣5)2+(2﹣5)2]=8;
本题考查了方差,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].
15.(2014·
台湾,第25题3分)有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知小育从甲箱内拿出49颗球放入乙箱后,乙箱内球的号码的中位数为40.若此时甲箱内有a颗球的号码小于40,有b颗球的号码大于40,则关于a、b之值,下列何者正确?
( )
A.a=16B.a=24C.b=24D.b=34
先求出甲箱的球数,再根据乙箱中位数40,得出乙箱中小于、大于40的球数,从而得出甲箱中小于40的球数和大于40的球数,即可求出答案.
甲箱98﹣49=49(颗),
∵乙箱中位数40,
∴小于、大于40各有(49﹣1)÷
2=24(颗),
∴甲箱中小于40的球有39﹣24=15(颗),大于40的有49﹣15=34(颗),即a=15,b=34.
此题考查了中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
16.(2014•浙江湖州,第5题3分)数据﹣2,﹣1,0,1,2的方差是( )
A.0B.
C.2D.4
先求出这组数据的平均数,再根据方差的公式进行计算即可.
∵数据﹣2,﹣1,0,1,2的平均数是:
(﹣2﹣1+0+1+2)÷
5=0,
∴数据﹣2,﹣1,0,1,2的方差是:
[(﹣2)2+(﹣1)2+02+12+22]=2.故选C.
本题考查了方差:
一般地设n个数据,x1,x2,…xn的平均数为
,则方差S2=
[(x1﹣
)2+(x2﹣
)2+…+(xn﹣
)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
17.(2014•株洲,第3题,3分)下列说法错误的是( )
必然事件的概率为1
数据1、2、2、3的平均数是2
数据5、2、﹣3、0的极差是8
如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖
概率的意义;
极差;
随机事件
A.根据必然事件和概率的意义判断即可;
B.根据平均数的秋乏判断即可;
C.求出极差判断即可;
D.根据概率的意义判断即可.
A.概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;
B.数据1、2、2、3的平均数是
=2,本项正确;
C.这些数据的极差为5﹣(﹣3)=8,故本项正确;
D.某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,
故选:
本题主要考查了概率的意义、求算术平均数以及极差的方法,比较简单.
18.(2014•泰州,第3题,3分)一组数据﹣1、2、3、4的极差是( )
极差.
极差是最大值减去最小值,即4﹣(﹣1)即可.
4﹣(﹣1)=5.
此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:
①极差的单位与原数据单位一致.②如果数据的平均数、中位数、极差都完全相同,此时用极差来反映数据的离散程度就显得不准确.
19.(2014•扬州,第4题,3分)若一组数据﹣1,0,2,4,x的极差为7,则x的值是( )
﹣3
6或﹣3
极差
根据极差的定义分两种情况进行讨论,当x是最大值时,x﹣(﹣1)=7,当x是最小值时,4﹣x=7,再进行计算即可.
∵数据﹣1,0,2,4,x的极差为7,
∴当x是最大值时,x﹣(﹣1)=7,
解得x=6,
当x是最小值时,4﹣x=7,
解得x=﹣3,
此题考查了极差,求极差的方法是用最大值减去最小值,本题注意分两种情况讨论.
20.(2014•呼和浩特,第2题3分)以下问题,不适合用全面调查的是( )
旅客上飞机前的安检
学校招聘教师,对应聘人员的面试
了解全校学生的课外读书时间
了解一批灯泡的使用寿命
全面调查与抽样调查.
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
A、旅客上飞机前的安检,意义重大,宜用全面调查,故此选项错误;
B、学校招聘教师,对应聘人员面试必须全面调查,故此选项错误;
C、了解全校同学课外读书时间,数量不大,宜用全面调查,故此选项错误;
D、了解一批灯泡的使用寿,具有破坏性,工作量大,不适合全面调查,故D选项正确.
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
21.(2014•滨州,第8题3分)有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()
平均数
方差
统计量的选择
专题:
应用题;
压轴题.
因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.
19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.
中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.学会运用中位数解决问题.
22.(2014•德州,第9题3分)雷霆队的杜兰特当选为2013﹣2014赛季NBA常规赛MVP,下表是他8场比赛的得分,则这8场比赛得分的众数与中位数分别为( )
场次
得分
30
28
38
26
39
42
2928
2829
2828
2827
根据众数和中位数的概念求解.
23,26,28,28,30,38,39,42,
则众数为:
28,
中位数为:
=29.
本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;
23.(2014•菏泽,第4题3分)2014年4月8日我市区县的可吸入颗粒物数值统计如下表:
区县
曹县
单县
成武
定陶
巨野
东明
郓城
鄄城
牡丹区
开发区
可吸入颗粒物
(mg/m3)
0.15
0.18
0.13
0.14
该日这一时刻的可吸入颗粒物数值的众数和中位数分别是()
0.15和0.14
0.18和0.15
0.18和0.14
0.15和0.15
众数是一组数据中出现次数最多的数;
中位数是将n个数据从小到大(或从大到小)重新排列后,①n是奇数,最中间的那个数是中位数;
②n是偶数,最中间两个数的平均数是中位数.据定义,此题可求.
将题干中十个数据按从小到大排列为:
0.13,0.13,0.14,0.14,0.15,0.15,0.15,0.15,0.18,0.18.
众数为0.15,中位数为(0.15+0.15)÷
2=0.15.
此题考查对众数和中位数的定义的掌握情况.记住定义是解决此类题目的关键.
24.(2014•济宁,第6题3分)从总体中抽取一部分数据作为样本去估计总体的某种属性.下面叙述正确的是( )
样本容量越大,样本平均数就越大
样本容量越大,样本的方差就越大
样本容量越大,样本的极差就越大
样本容量越大,对总体的估计就越准确
用样本频率估计总体分布的过程中,估计的是否准确与总体的数量无关,只与样本容量在总体中所占的比例有关,对于同一个总体,样本容量越大,估计的越准确.
∵用样本频率估计总体分布的过程中,
估计的是否准确与总体的数量无关,
只与样本容量在总体中所占的比例有关,
∴样本容量越大,估计的越准确.
此题考查了抽样和样本估计总体的实际应用,注意在一个总体中抽取一定的样本估计总体,估计的是否准确,只与样本在总体中所占的比例有关.
25.(2014年山东泰安,第9题3分)以下是某校九年级10名同学参加学校演讲比赛的统计表:
成绩/分80859095
人数/人1252
则这组数据的中位数和平均数分别为( )
A.90,90B.90,89C.85,89D.85,90
根据中位数的定义先把这些数从小到大排列,求出最中间的两个数的平均数,再根据平均数的计算公式进行计算即可.
∵共有10名同学,中位数是第5和6
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国各地中考数学真题分类解析汇编14 统计 全国各地 中考 数学 分类 解析 汇编 14