背包九讲Word格式文档下载.docx
- 文档编号:17947044
- 上传时间:2022-12-12
- 格式:DOCX
- 页数:19
- 大小:34.33KB
背包九讲Word格式文档下载.docx
《背包九讲Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《背包九讲Word格式文档下载.docx(19页珍藏版)》请在冰豆网上搜索。
第三讲多重背包问题
每种物品有一个固定的次数上限。
第四讲混合三种背包问题
将前面三种简单的问题叠加成较复杂的问题。
第五讲二维费用的背包问题
一个简单的常见扩展。
第六讲分组的背包问题
一种题目类型,也是一个有用的模型。
后两节的基础。
第七讲有依赖的背包问题
另一种给物品的选取加上限制的方法。
第八讲泛化物品
我自己关于背包问题的思考成果,有一点抽象。
第九讲背包问题问法的变化
试图触类旁通、举一反三。
USACO中的背包问题
给出USACOTraining上可供练习的背包问题列表,及简单的解答。
联系方式
如果有任何意见和建议,特别是文章的错误和不足,或者希望为文章添加新的材料,可以通过
致谢
感谢以下名单:
∙阿坦
∙jason911
∙donglixp
他们每人都最先指出了本文第一个beta版中的某个并非无关紧要的错误。
谢谢你们如此仔细地阅读拙作并弥补我的疏漏。
感谢XiaQ,它针对本文的第一个beta版发表了用词严厉的六条建议,虽然我只认同并采纳了其中的两条。
在所有读者几乎一边倒的赞扬将我包围的当时,你的贴子是我的一剂清醒剂,让我能清醒起来并用更严厉的眼光审视自己的作品。
当然,还有用各种方式对我表示鼓励和支持的几乎无法计数的同学。
不管是当面赞扬,或是在论坛上回复我的贴子,不管是发来热情洋溢的邮件,或是在即时聊天的窗口里竖起大拇指,你们的鼓励和支持是支撑我的写作计划的强大动力,也鞭策着我不断提高自身水平,谢谢你们!
最后,感谢Emacs这一世界最强大的编辑器的所有贡献者,感谢它的插件EmacsMuse的开发者们,本文的所有编辑工作都借助这两个卓越的自由软件完成。
谢谢你们——自由软件社群——为社会提供了如此有生产力的工具。
我深深钦佩你们身上体现出的自由软件的精神,没有你们的感召,我不能完成本文。
在你们的影响下,采用自由文档的方式发布本文档,也是我对自由社会事业的微薄努力。
P01:
01背包问题
题目
有N件物品和一个容量为V的背包。
第i件物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使价值总和最大。
基本思路
这是最基础的背包问题,特点是:
每种物品仅有一件,可以选择放或不放。
用子问题定义状态:
即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。
则其状态转移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。
所以有必要将它详细解释一下:
“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];
如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
优化空间复杂度
以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[i][0..V]的所有值。
那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[i][v]呢?
f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]两个子问题递推而来,能否保证在推f[i][v]时(也即在第i次主循环中推f[v]时)能够得到f[i-1][v]和f[i-1][v-c[i]]的值呢?
事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c[i]]保存的是状态f[i-1][v-c[i]]的值。
伪代码如下:
fori=1..N
forv=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。
如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[i][v]由f[i][v-c[i]]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。
过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。
procedureZeroOnePack(cost,weight)
forv=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意这个过程里的处理与前面给出的伪代码有所不同。
前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。
而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。
费用为cost的物品不会影响状态f[0..cost-1],这是显然的。
有了这个过程以后,01背包问题的伪代码就可以这样写:
ZeroOnePack(c[i],w[i]);
初始化的细节问题
我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。
有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。
一种区别这两种问法的实现方法是在初始化的时候有所不同。
如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。
为什么呢?
可以这样理解:
初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。
如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。
如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。
这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解。
小结
01背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想,另外,别的类型的背包问题往往也可以转换成01背包问题求解。
故一定要仔细体会上面基本思路的得出方法,状态转移方程的意义,以及最后怎样优化的空间复杂度。
P02:
完全背包问题
有N种物品和一个容量为V的背包,每种物品都有无限件可用。
第i种物品的费用是c[i],价值是w[i]。
求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。
这个问题非常类似于01背包问题,所不同的是每种物品有无限件。
也就是从每种物品的角度考虑,与它相关的策略已并非取或不取两种,而是有取0件、取1件、取2件……等很多种。
如果仍然按照解01背包时的思路,令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值。
仍然可以按照每种物品不同的策略写出状态转移方程,像这样:
f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<
=k*c[i]<
=v}
这跟01背包问题一样有O(N*V)个状态需要求解,但求解每个状态的时间已经不是常数了,求解状态f[i][v]的时间是O(v/c[i]),总的复杂度是超过O(VN)的。
将01背包问题的基本思路加以改进,得到了这样一个清晰的方法。
这说明01背包问题的方程的确是很重要,可以推及其它类型的背包问题。
但我们还是试图改进这个复杂度。
一个简单有效的优化
完全背包问题有一个很简单有效的优化,是这样的:
若两件物品i、j满足c[i]<
=c[j]且w[i]>
=w[j],则将物品j去掉,不用考虑。
这个优化的正确性显然:
任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。
对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。
然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉。
这个优化可以简单的O(N^2)地实现,一般都可以承受。
另外,针对背包问题而言,比较不错的一种方法是:
首先将费用大于V的物品去掉,然后使用类似计数排序的做法,计算出费用相同的物品中价值最高的是哪个,可以O(V+N)地完成这个优化。
这个不太重要的过程就不给出伪代码了,希望你能独立思考写出伪代码或程序。
转化为01背包问题求解
既然01背包问题是最基本的背包问题,那么我们可以考虑把完全背包问题转化为01背包问题来解。
最简单的想法是,考虑到第i种物品最多选V/c[i]件,于是可以把第i种物品转化为V/c[i]件费用及价值均不变的物品,然后求解这个01背包问题。
这样完全没有改进基本思路的时间复杂度,但这毕竟给了我们将完全背包问题转化为01背包问题的思路:
将一种物品拆成多件物品。
更高效的转化方法是:
把第i种物品拆成费用为c[i]*2^k、价值为w[i]*2^k的若干件物品,其中k满足c[i]*2^k<
=V。
这是二进制的思想,因为不管最优策略选几件第i种物品,总可以表示成若干个2^k件物品的和。
这样把每种物品拆成O(log(V/c[i]))件物品,是一个很大的改进。
但我们有更优的O(VN)的算法。
O(VN)的算法
这个算法使用一维数组,先看伪代码:
forv=0..V
你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。
为什么这样一改就可行呢?
首先想想为什么P01中要按照v=V..0的逆序来循环。
这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。
换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。
而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v=0..V的顺序循环。
这就是这个简单的程序为何成立的道理。
这个算法也可以以另外的思路得出。
例如,基本思路中的状态转移方程可以等价地变形成这种形式:
f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]}
将这个方程用一维数组实现,便得到了上面的伪代码。
最后抽象出处理一件完全背包类物品的过程伪代码,以后会用到:
procedureCompletePack(cost,weight)
forv=cost..V
总结
完全背包问题也是一个相当基础的背包问题,它有两个状态转移方程,分别在“基本思路”以及“O(VN)的算法“的小节中给出。
希望你能够对这两个状态转移方程都仔细地体会,不仅记住,也要弄明白它们是怎么得出来的,最好能够自己想一种得到这些方程的方法。
事实上,对每一道动态规划题目都思考其方程的意义以及如何得来,是加深对动态规划的理解、提高动态规划功力的好方法。
P03:
多重背包问题
有N种物品和一个容量为V的背包。
第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。
基本算法
这题目和完全背包问题很类似。
基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:
取0件,取1件……取n[i]件。
令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:
=k<
=n[i]}
复杂度是O(V*Σn[i])。
转化为01背包问题
另一种好想好写的基本方法是转化为01背包求解:
把第i种物品换成n[i]件01背包中的物品,则得到了物品数为Σn[i]的01背包问题,直接求解,复杂度仍然是O(V*Σn[i])。
但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。
仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。
另外,取超过n[i]件的策略必不能出现。
方法是:
将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。
使这些系数分别为1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>
0的最大整数。
例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。
分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。
另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。
这样就将第i种物品分成了O(logn[i])种物品,将原问题转化为了复杂度为O(V*Σlogn[i])的01背包问题,是很大的改进。
下面给出O(logamount)时间处理一件多重背包中物品的过程,其中amount表示物品的数量:
procedureMultiplePack(cost,weight,amount)
ifcost*amount>
=V
{
CompletePack(cost,weight)
Return
}
integerk=1
whilek<
amount
ZeroOnePack(k*cost,k*weight)
amount=amount-k
k=k*2
}
ZeroOnePack(amount*cost,amount*weight)
希望你仔细体会这个伪代码,如果不太理解的话,不妨翻译成程序代码以后,单步执行几次,或者头脑加纸笔模拟一下,也许就会慢慢理解了。
多重背包问题同样有O(VN)的算法。
这个算法基于基本算法的状态转移方程,但应用单调队列的方法使每个状态的值可以以均摊O
(1)的时间求解。
由于用单调队列优化的DP已超出了NOIP的范围,故本文不再展开讲解。
我最初了解到这个方法是在楼天成的“男人八题”幻灯片上。
这里我们看到了将一个算法的复杂度由O(V*Σn[i])改进到O(V*Σlogn[i])的过程,还知道了存在应用超出NOIP范围的知识的O(VN)算法。
希望你特别注意“拆分物品”的思想和方法,自己证明一下它的正确性,并将完整的程序代码写出来。
P04:
混合三种背包问题
问题
如果将P01、P02、P03混合起来。
也就是说,有的物品只可以取一次(01背包),有的物品可以取无限次(完全背包),有的物品可以取的次数有一个上限(多重背包)。
应该怎么求解呢?
01背包与完全背包的混合
考虑到在P01和P02中给出的伪代码只有一处不同,故如果只有两类物品:
一类物品只能取一次,另一类物品可以取无限次,那么只需在对每个物品应用转移方程时,根据物品的类别选用顺序或逆序的循环即可,复杂度是O(VN)。
if第i件物品是01背包
elseif第i件物品是完全背包
再加上多重背包
如果再加上有的物品最多可以取有限次,那么原则上也可以给出O(VN)的解法:
遇到多重背包类型的物品用单调队列解即可。
但如果不考虑超过NOIP范围的算法的话,用P03中将每个这类物品分成O(logn[i])个01背包的物品的方法也已经很优了。
当然,更清晰的写法是调用我们前面给出的三个相关过程。
ZeroOnePack(c[i],w[i])
CompletePack(c[i],w[i])
elseif第i件物品是多重背包
MultiplePack(c[i],w[i],n[i])
在最初写出这三个过程的时候,可能完全没有想到它们会在这里混合应用。
我想这体现了编程中抽象的威力。
如果你一直就是以这种“抽象出过程”的方式写每一类背包问题的,也非常清楚它们的实现中细微的不同,那么在遇到混合三种背包问题的题目时,一定能很快想到上面简洁的解法,对吗?
有人说,困难的题目都是由简单的题目叠加而来的。
这句话是否公理暂且存之不论,但它在本讲中已经得到了充分的体现。
本来01背包、完全背包、多重背包都不是什么难题,但将它们简单地组合起来以后就得到了这样一道一定能吓倒不少人的题目。
但只要基础扎实,领会三种基本背包问题的思想,就可以做到把困难的题目拆分成简单的题目来解决。
P05:
二维费用的背包问题
二维费用的背包问题是指:
对于每件物品,具有两种不同的费用;
选择这件物品必须同时付出这两种代价;
对于每种代价都有一个可付出的最大值(背包容量)。
问怎样选择物品可以得到最大的价值。
设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。
两种代价可付出的最大值(两种背包容量)分别为V和U。
物品的价值为w[i]。
算法
费用加了一维,只需状态也加一维即可。
设f[i][v][u]表示前i件物品付出两种代价分别为v和u时可获得的最大价值。
状态转移方程就是:
f[i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}
如前述方法,可以只使用二维的数组:
当每件物品只可以取一次时变量v和u采用逆序的循环,当物品有如完全背包问题时采用顺序的循环。
当物品有如多重背包问题时拆分物品。
这里就不再给出伪代码了,相信有了前面的基础,你能够自己实现出这个问题的程序。
物品总个数的限制(?
?
)
有时,“二维费用”的条件是以这样一种隐含的方式给出的:
最多只能取M件物品。
这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为1,可以付出的最大件数费用为M。
换句话说,设f[v][m]表示付出费用v、最多选m件时可得到的最大价值,则根据物品的类型(01、完全、多重)用不同的方法循环更新,最后在f[0..V][0..M]范围内寻找答案。
当发现由熟悉的动态规划题目变形得来的题目时,在原来的状态中加一纬以满足新的限制是一种比较通用的方法。
希望你能从本讲中初步体会到这种方法。
P06:
分组的背包问题
这些物品被划分为若干组,每组中的物品互相冲突,最多选一件。
这个问题变成了每组物品有若干种策略:
是选择本组的某一件,还是一件都不选。
也就是说设f[k][v]表示前k组物品花费费用v能取得的最大权值,则有:
f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i属于第k组}
使用一维数组的伪代码如下:
for所有的组k
for所有的i属于组k
f[v]=max{f[v],f[v-c[i]]+w[i]}
注意这里的三层循环的顺序,甚至在本文的beta版中我自己都写错了。
“forv=V..0”这一层循环必须在“for所有的i属于组k”之外。
这样才能保证每一组内的物品最多只有一个会被添加到背包中。
另外,显然可以对每组内的物品应用P02中“一个简单有效的优化”。
分组的背包问题将彼此互斥的若干物品称为一个组,这建立了一个很好的模型。
不少背包问题的变形都可以转化为分组的背包问题(例如P07),由分组的背包问题进一步可定义“泛化物品”的概念,十分有利于解题。
P07:
有依赖的背包问题
简化的问题
这种背包问题的物品间存在某种“依赖”的关系。
也就是说,i依赖于j,表示若选物品i,则必须选物品j。
为了简化起见,我们先设没有某个物品既依赖于别的物品,又被别的物品所依赖;
另外,没有某件物品同时依赖多件物品。
这个问题由NOIP2006金明的预算方案一题扩展而来。
遵从该题的提法,将不依赖于别的物品的物品称为“主件”,依赖于某主件的物品称为“附件”。
由这个问题的简化条件可知所有的物品由若干主件和依赖于每个主件的一个附件集合组成。
按照背包问题的一般思路,仅考虑一个主件和它的附件集合。
可是,可用的策略非常多,包括:
一个也不选,仅选择主件,选择主件后再选择一个附件,选择主件后再选择两个附件……无法用状态转移方程来表示如此多的策略。
(事实上,设有n个附件,则策略有2^n+1个,为指数级。
考虑到所有这些策略都是互斥的(也就是说,你只能选择一种策略),所以一个主件和它的附件集合实际上对应于P06中的一个物品
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 背包