SERS物理增强机理精Word格式文档下载.docx
- 文档编号:17913565
- 上传时间:2022-12-12
- 格式:DOCX
- 页数:11
- 大小:654.77KB
SERS物理增强机理精Word格式文档下载.docx
《SERS物理增强机理精Word格式文档下载.docx》由会员分享,可在线阅读,更多相关《SERS物理增强机理精Word格式文档下载.docx(11页珍藏版)》请在冰豆网上搜索。
NationalNanoDeviceLaboratories,Hsinchu300,Taiwan
*
Tel:
+88635712121ext52974;
Fax:
+88635726639;
E-mail:
*****************.edu.tw
Abstract-Inthiswork,westudysurfaceenhancedRamanidentificationofRhdamine6G(R6G)areexamined.Thispaperspectroscopy(SERS)activesubstratesforthedetectionofisorganizedasfollows.InSec.II,weintroducethefabricationRhodamine6G.Toexaminetheelectromagneticenhancement,processandcomputationaltechniquefortheSERS-activewithdifferentshapeofnanoparticle,weapplythefinite-substrates.InSec.III,thelocalfieldenhancementsof
differencetimedomain(FDTD)algorithmtoanalyzethenanoparticlewithdifferentshapesarecalculatedbythree-structuresbysolvingasetofcoupledMaxwell’sequationsindimensional(3D)finite-differencetime-domain(FDTD)differentialform.Thefieldenhancementsareinvestigatedinthenumericalsimulation.Finally,wedrawtheconclusionsandvisibleregimewiththewavelengthof633nm.Inthesuggestthefuturework.
experimentalmeasurement,thesurfaceenhancedRamanscatteringsignalsfromthesurfaceofsubstrateswith12-hour
II.FABRICATIONANDCOMPUTATIONALTECHNIQUEhydrothermaltreatmentandwithouttreatmentareperformed
andcompared.Throughthethree-dimensional(3D)FDTDFortheflowoffabrication,asshowninFig.1,first,calculation,theenhancementswithdifferentshapeofbufferedoxideetchant(BOE)andstandardRCAcleaningare
nanoparticlearetestedandobtainedwhicharenanoparticle,carriedouttopreparecleansiliconsubstrates(Boron-doped
goldnanocageandgold/silveralloyforspherical,cubicandpyramidicalshapes.Theresultsshowthattheenhancementof
(i)sphericalandcubicshapescanbemuchimprovedbynanocage
andgold/siliveralloystructures.
Keywords-Surface-EnhancedRamanspectroscopy(SERS),electromagneticenhancement,nanoparticle,goldnanocage,gold/silveralloy,finite-differencetime-domain,hydrothermallytreatedsubstrate.
(ii)
I.INTRODUCTION
Surface-enhancedRamanScattering(SERS)isoneofthecharacterizationtechniques,whichissensitivetotheenhancedelectromagneticfields[1-6].SERS-activesubstrateshaverecentlyattractedagreatdealofattentionforrapididentificationofchemicalandbacterialsamples[5-7].Thefabricatednanostructuresforbothbottom-upandtop-downapproacheshavebeenreported.And,thedegreeofRamanenhancementisstronglydependentonthemorphologyofformulatednanostructures[8].Recently,atop-downapproachforthefabricationofSERS-activesubstratewasproposed[9-12].However,theexpensivesubstrate,equipmentsandcomplicatedprocessareneeded.Therefore,alowcost,environmentfriendlyandsimplefabricationforSERS-activesubstrateswillbeofgreatinterestforbasicandclinicalresearchersaswellasforbiotechnologies.Inthisstudy,weexperimentallyandcomputationallystudythelocalfieldenhancementsofnanoparticlesonhydrothermallyroughenedSERS-activesubstrates,wheretheeffectsofshapeandsizeofAuparticlesandapplicationofthefabricatedsamplesin
(iii)
(iv)
Figure1.SchematicrepresentationforthefabricationofSERS-activesubstrate.First,siliconwaferswerecleanedbyBOEandstandardRCAcleaningprocedures.Then,Tifilmsweredepositedonthepre-cleanedsiliconwafersusingreactiveDCmagnetronsputteringsystem.Theasdepositedsampleswerecleavedandtreatedunderhydrothermalconditionsforvariousdurations.Subsequently,Auwasthermalevaporatedontothehydrothermallyroughenedsubstratesforsensing..
Figure.2(a)TheAFMimageoftitaniumthinfilmstreatedunderhydrothermalconditionfor12hourstreatmentduration.(b)Theplotofsimulatedsubstratewhichispartofrealsubstrate,wherethematrixofnanoparticlesis3x5duetoperiodicalpropertyofthesimulatedstructure.
p<
100>
).Then,100-nm-thicktitaniumfilmsaredepositedonthepre-cleanedsiliconwafersusingreactiveDCmagnetronsputteringsystem.Theas-depositedsampleiscleavedinto0.5cmx1cmsquaresandrinsedwithethanol,andde-ionizedwater.Subsequently,thesampleisputintoa23mLTeflon-linedstainlesssteelautoclavefilledwith20mLdistilledwater,whichissealed,andheatedat200oCfor2,4,6,8,10,and12hours,respectively.Thenthetreatedsampleiscooledtoroomtemperaturenaturally,washedwithdistilledwaterforseveraltimes,anddriedwithastreamofcylinderair.Forexample,theimageofFig.2(a)showstheAFMimagesrepresenttitaniumthinfilmstreatedunderhydrothermalconditionsfor12hourstreatmentduration.
TheimageofFig.2(b)showstheplaneviewofthegold-coatednanoparticularstructure,wherethematrixofnanoparticlesis3x5duetoperiodicalpropertyofthesimulatedstructure.Numericalsimulationusinga3DFDTDmethodisconductedtoinvestigatethelocalfieldenhancementofsubstrate[13-15].TheMaxwell’scurlequationsinlinear,isotropic,nondispersive,lossymaterialsare
∂B
K
KK∂=−∇×
E,
(1)∂EKKt∂t=−J1KK
ε+με
∇×
B,
(2)∇⋅BK
=0,(3)
Figure3.ThesimulationprocedureofsolvingtheMaxwell’sequations.
∇K⋅EK=ρ
ε
(4)
whereEKandBK
arethevectorsofelectricandmagneticfields,respectively,ϵandμarepermeabilityandpermittivityandJKandρarethecurrentdensityvectorandchargedensity.Foragloballydefinedcurvilinearspace,Maxwell’sequationsareeasilyimplementedintheirdifferentialform,whereFaraday’slawisEq.
(1)andAmpere’slawisEq.
(2).
TheFDTDmethodsolvesMaxwell’sequationsbyfirstdiscretizingallequationsviacentraldifferencesintimeandspace.Then,basedupona3DYee’smeshandcomponentsoftheelectricandmagneticfieldsatpoints,thediscretizedspacinginthex,y,andzdirectionsadoptedinoursimulationare|x|=0.01um,|y|=0.01umand|z|=0.01um,wherethetimestepΔtis0.0004andthetimedurationTis3inunitsoffemtoseconds.Thediscretizedequationsareiterativelysolvedinaleapfrogmanner,alternatingbetweencomputingtheEand
HfieldsatsubsequentΔt/2intervals,asshowninFig.3.Notably,weemploytheperfectlymatchedlayerasthesimulationdomainboundariesinwhichbothelectricandmagneticconductivitiesareintroducedinsuchawaythatwaveimpedanceremainsconstant,absorbingtheenergywithout
inducingreflections.III.RESULTSANDDISCUSSION
Inordertohavelesslightabsorption,thelargerscatteringofsubstrateisbettertoachievelargerfieldenhancement.Forchemicalsensing,thehydrothermallyroughenedsubstratesaretreatedwithaqueoussolutionsof10-4MR6G.TheThechemicalstructureofR6GisshowninFig.4(a).Fig.4(b)showsthatthecharacteristicRamanvibrationalmodesofR6Gimmobilizedonthesubstratewithorwithouthydrothermaltreatment.Thesubstratewithhydrothermaltreatmentshows
Figure4.(a)ChemicalstructureofRhodamine6G(R6G).ThemoleculeiswidelyusedforSERSmeasurements.(b)TheRamanspectraforR6G(10-4M)immobilizedonhydrothermallyuntreated(blue)andtreated(orange)
substrates.
AuAg
Figure5.Goldnanoparticle,goldnanocageandgold/silveralloy(fromlefttoright)forspherical,cubicandpyramidicalshapes,respectively.
largerintensitythanthatwithouthydrothermaltreatmentduetotheroughnessonthesurface[16].AccordingtotheBeckmann-Kirchhofftheory,theroughenedsurfacehaslargerscatteringonthesurfaceofsubstratesothattheintensitycanbeenhanced.ThroughusingtheFDTDsimulation,theevaluationofelectricfieldonthesubstratesiscarriedoutbythedirectinglightwithawavelengthof633nm.
Notablythenanosensoralsocanbefabricatedbyothersynthesismethodstoachievedifferentshapeofnanoparticles.
Figure6.Theplotofelectricfieldenhancementfactorversusdifferentsamples.
Figure.7.Thetopviewofelectricfielddistributionwithsphericalshapeof(a)Aunanoparticle,(b)Aunanocageand(c)Au/Agalloy,respectively.
Here,weconsidergoldnanoparticle,goldnanocageandgold/silveralloy(fromlefttoright)forspherical,cubicandpyramidicalshapes,asshowninFig5.Thesimulationresultsshowthattheelectricfield(Ex)enhancementofnanoparticlewithcubicshapeislargerthanthatwithsphericalandpyramidshapes,asshowninFig.6.Toimprovetheenhancement,thestructureisconsideredtofabricatebydifferentsynthesizedstructuresforspherical,cubicandpyramidicalshapes,respectively.ThesynthesizedstructuresareillustratedinFig.5,whicharethegoldnanocage(middleone)andgold/silveralloywithemptyandsilverinside,respectively.FromtheresultsofFig.6,theAu/Agalloyandgoldnanocageareadoptedforsphericalandcubicshapesbecausetheenhancementismuchimproved.Forpyramid,theEmetalalloyisalmostthesame.Theseresultscanbeexplainedxenhancementofnanocageorbydistributionofelectricfield.ThecorrespondingdistributionsofelectricfieldareshowninFig.7,8and9,respectively.Forsphericalshape,theenhancementofAunanoparticleislocally
Figure.8.Topviewsofelectricfielddistributionwiththecubicshapeof(a)
Aunanoparticle,(b)Aunanocage,(c)andAu/Agalloy,respectively.
Figure.9.Topviewsofelectricfielddistributionwiththepyramidicalshapeof(a)Aunanoparticle,(b)Aunanocage,and(c
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- SERS 物理 增强 机理